Personal tools

Difference between revisions of "MMS: Mathematical Foundations of M&S"

From hpcwiki

Jump to: navigation, search
(Created page with "This is a basic subject on matrix theory and linear algebra. Emphasis is given to topics that will be useful in models and simulation for several disciplines. It includes syst...")
 
(Week activities)
 
(58 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 +
[[File:Logos-tadeo-central.png]]
 +
== English version ==
 
This is a basic subject on matrix theory and linear algebra. Emphasis is given to topics that will be useful in models and simulation for several disciplines. It includes systems of equations, vector spaces, determinants and eigenvalues.
 
This is a basic subject on matrix theory and linear algebra. Emphasis is given to topics that will be useful in models and simulation for several disciplines. It includes systems of equations, vector spaces, determinants and eigenvalues.
  
== Goals ==
+
=== Goals ===
 
* Enhance the mathematics skills and fundaments.
 
* Enhance the mathematics skills and fundaments.
 +
* Give enough mathematic basics to understand the topics of modelling and simulation systems.
  
== Competences ==
 
  
Objetivo:
+
=== Content ===
*Fortalecer la formación matemática de los estudiantes 
+
• Proporcionar  los fundamentos matemáticos necesarios para  abordar adecuadamente las temáticas propias  del modelado y la simulación de sistemas.
+
Competencias generadas:
+
Competencias interpretativas:
+
  
• Identificar las variables, constantes y parámetros que definen un sistema.  
+
<ul>
• Leer, comprender e interpretar textos científicos con contenido matemático.
+
<li>Vectorial calculus. One variable calculus.</li>
• Asociar los resultados obtenidos a través del modelado con las características del sistema representado.
+
<ol>
• Expresar principios e hipótesis usando diferentes elementos del  lenguaje matemático.
+
<li>Review of one variable calculus.</li>
 +
<li>Function definition.</li>
 +
<li>Derivatives.</li>
 +
<li>Integrals.</li>
 +
</ol>
  
Competencias argumentativas:
+
<li>First order differential equations.</li>
• Establecer y analizar relaciones que representan fenómenos, sistemas y/o procesos.  
+
<ol>
• Seleccionar y utilizar métodos apropiados para  resolver problemas o sistemas.
+
<li>Basic Concepts. Modeling.
• Explicar ideas técnicas a través de textos, gráficas, ecuaciones e imágenes.
+
</li><li>Geometric Meaning of y r ϭ f (x, y). Direction Fields, Euler’s Method.
 +
</li><li>Separable ODEs. Modeling.
 +
</li><li>Exact ODEs. Integrating Factors.
 +
</li><li>Linear ODEs. Bernoulli Equation. Population Dynamics.
 +
</li><li>Orthogonal Trajectories.
 +
</li><li>Existence and Uniqueness of Solutions for Initial Value Problem.
 +
</ol>
  
Competencia propositiva:
+
<li>Second order differential equations.</li>
• Plantear  un modelo matemático adecuado a casos particulares o problemas típicos.
+
<ol>
• Realizar diferentes tipos de representaciones para un único sistema.
+
</li><li>Homogeneous Linear ODEs of Second Order
Contenido de la Asignatura:
+
</li><li>Homogeneous Linear ODEs with Constant Coefficients
1. SISTEMAS DE ECUACIONES LINEALES.
+
</li><li>Modeling of Free Oscillations of a Mass–Spring System
1.1. Matrices: operaciones y propiedades
+
</li><li>Differential Operators.
1.2. Resolución de sistemas de ecuaciones por los métodos de Gauss y Gauss Jordan.  
+
</li><li>Euler–Cauchy Equations
1.3. Resolución de sistemas de ecuaciones lineales utilizando la inversa y regla de Cramer.  
+
</li><li>Existence and Uniqueness of Solutions.  
1.4. Aplicaciones: Análisis de Insumo Producto de Leontief, Teoría de grafos y Cadenas de Markov.
+
</li><li>Nonhomogeneous ODEs
 +
</li><li>Modeling: Forced Oscillations.  
 +
</ol>
  
2. VECTORES EN Rn
+
<li>Linear Algebra and systems of ordinary differential equations</li>
2.1. Vectores en Rn
+
<ol>
2.2. Operaciones entre vectores
+
<li>Spaces and subspaces.</li>
2.3. Producto punto, norma y proyecciones
+
<li>Lineal combination and space generation.</li>
2.4. Producto cruz
+
<li>lineal dependence and lineal independece.</li>
2.5. Aplicaciones: Paralelismo y ortogonalidad de vectores, vectores de área y de superficie.
+
<li>Basis and dimension</li>
 +
<li>Linear transformations.</li>
 +
<li>Eigen-values and eigen-vectors</li>
 +
</ol>
  
4. ESPACIOS VECTORIALES
+
<ol>
4.1. Espacios y sub-espacios
+
<li>Matrix: Operations and properties.</li>
4.2. Combinación lineal y espacio generado
+
<li>Resolve linear systems by Gauss and Gauss-Jordan methods.</li>
4.3. Dependencia e independencia lineal
+
<li>Resolve linear systems by inverse and Cramer's rule.</li>
4.4. Bases y dimensión
+
<li>Applications: Leonlief product supplies analysis.</li>
4.5. Transformaciones lineales.
+
</ol>
4.6. Valores propios y vectores propios
+
  
5. FUNCIONES DE UNA Y VARIAS VARIABLES
+
<ol>
5.1. Generalidades de funciones en una variable
+
<li>systems of ordinary differential equations.</li>
5.2. Generalidades de funciones en varias variables
+
<li> Homogeneous systems of ordinary differential equations.</li>
5.3. Derivadas parciales, gradiente y derivadas direccionales
+
<li>Resolve linear systems of differential equations .</li>
5.4. Optimización
+
<li>linearization of high order differential equations.</li>
5.5. Integración múltiple
+
</ol>
5.6. Análisis vectorial
+
  
6. ECUACIONES DIFERENCIALES
+
<li>Vectorial calculus. Several variable functions.</li>
6.1. Ecuaciones diferenciales de primer orden
+
<ol>
6.2. Ecuaciones de diferenciales de segundo orden
+
</li><li>Vectors in 2-Space and 3-Space.
6.3. Sistemas de ecuaciones diferenciales
+
</li><li>Inner Product (Dot Product).
6.4. Solución mediante el método de transformadas
+
</li><li>Vector Product (Cross Product).
6.5. Introducción a las ecuaciones diferenciales parciales
+
</li><li>Vector and Scalar Functions and their Fields.
Metodología:
+
</li><li>Vector Calculus: Derivatives.
• La enseñanza de este curso se realizará a través de clases teóricas y prácticas en  salas de cómputo.
+
</li><li>Functions of Several Variables.
• En el desarrollo de las clases  prevalecerá  la conceptualización en los temas  a tratar  sobre las destrezas operativas que pueden trabajarse mediante Sistemas Algebraicos Computacionales SAC.  
+
</li><li> Gradient of a Scalar Field.
• Durante el curso se hará énfasis  en la importancia de cada tema en la  formulación de modelos, considerando los diferentes campos de aplicación, más que en la implementación de algoritmos.  
+
</li><li>Directional Derivatives.
Criterios de evaluación:
+
</li><li>Divergence of a Vector Field.
Conforme a las políticas institucionales, los criterios de evaluación son discrecionales.  
+
</li><li>Curl of a Vector Field.
Bibliografía básica:
+
</li><li>Lagrange multipliers.
Giordano, F., Fox, W., Horton, S., & Weir, M. (2009). A first course in mathematical modeling . Canada: Brooks/Cole Cengage Learning.
+
</ol>
Grossman, S. (2008). Álgebra Lineal. México: Mc Graw Hill.
+
<li>partial differential equations.</li>
Kolman, B., & Hill, D. (2013). Álgebra Lineal. Fundamentos y apliaciones. Bogotá: Pearson.
+
<ol>
Larson, R., & Edwards, B. H. (2010). Calculo 2 de Varias variables. China: Mc Graw Hill.
+
</li><li>Introduction to partial differential equations (PDE)
Meerschaaert, M. (2007). Mathematical Modeling. San Diego, United States of America: Elsevier Academic Press.
+
</li><li>Solution by transforms methods</li>
Zill, D. G. (2002). Ecuaciones diferenciales con aplicaciones de modelado. México: Cengage Learning.
+
</ol>
 +
</ul>
  
Bibliografía complementaria y lecturas recomendadas:
+
=== Week activities ===
 +
<table class="wikitable">
 +
<tr><td>Session date</td><td>Teacher</td><td>Topic</td><td>External resources</td></tr>
 +
<tr>
 +
<td>1 - 31-Julio</td><td>Todos, Camilo</td>
 +
<td>
  
 +
<ul>
 +
<li>Presentation</li>
 +
<li>Vectorial calculus. One variable calculus.</li>
 +
<ol>
 +
<li>Review of one variable calculus.</li>
 +
<li>Function definition.</li>
 +
<li>Derivatives.</li>
 +
<li>Integrals.</li>
 +
</ol>
 +
</ul>
 +
</td>
 +
<td>
 +
<!--[http://www.mathresource.iitb.ac.in/linear%20algebra/appletsla.html Applets algebra lineal]<br/>
 +
[http://ocw.mit.edu/ans7870/18/18.06/tools/Applets_sound/uropmovie.html Matrix Multiplicaction]<br/>
 +
[http://ocw.mit.edu/ans7870/18/18.06/javademo/GaussElim/ Gauss Elimination]<br/>
 +
[http://ocw.mit.edu/ans7870/18/18.06/javademo/Determinant/ Determinants]<br/>
 +
[http://people.hofstra.edu/Stefan_Waner/tutorialsf1/scriptpivot2.html Gauss-Jordan Pivot trainning]<br/>
 +
[http://personal.bgsu.edu/~meel/Tools/ Algebra Lineal tutoriales]-->
 +
</td>
 +
</tr>
  
 +
<tr>
 +
<td>2 14 Agosto</td><td>Camilo</td>
 +
<td>
 +
<ul>
 +
<li>LAB: One variable Calculus with MatLab and applications [http://www.tutorialspoint.com/matlab/matlab_plotting.htm MatLab-Plotting] [http://www.tutorialspoint.com/matlab/matlab_calculus.htm MatLab-Calculus]
 +
[[file:Taller-CalcVec1D.pdf]]</li>
 +
</ul>
 +
</td>
 +
<td>
 +
<!--[http://en.wikibooks.org/wiki/Linear_Algebra/Definition_and_Examples_of_Linear_Independence Linear Independence Examples]<br>
 +
[http://algebra.nipissingu.ca/tutorials/vector_space.html Vector Space]<br/>
 +
[http://www.math.odu.edu/~bogacki/cgi-bin/lat.cgi?c=li Linear independence]<br/>
 +
[http://ocw.mit.edu/ans7870/18/18.06/tools/individual/eigen_lecture_1.html Eigen-vectors/values]<br>
 +
[http://ocw.mit.edu/ans7870/18/18.06/javademo/Eigen/ eigenvalues]</td>-->
 +
</tr>
 +
<tr>
 +
<td>3 21-Agosto</td><td>Angelica</td>
 +
<td>
 +
<ul>
 +
<li>First order differential equations.</li>
 +
<ol>
 +
<li>Basic Concepts. Modeling.
 +
</li><li>Geometric Meaning of y r ϭ f (x, y). Direction Fields, Euler’s Method.
 +
</li><li>Separable ODEs. Modeling.
 +
</li><li>Exact ODEs. Integrating Factors.
 +
</li><li>Linear ODEs. Bernoulli Equation. Population Dynamics.
 +
</li><li>Orthogonal Trajectories.
 +
</li><li>Existence and Uniqueness of Solutions for Initial Value Problem.
 +
</ol>
 +
</ul>
 +
</td>
 +
<td>
 +
<!--MuPAD [http://math.uprag.edu/MuPAD.pdf 1] [http://math.uprag.edu/mupad-algebra-lineal.pdf 2] [http://www.brown.edu/Departments/Engineering/Courses/En4/Tutorials/Mupad_tutorial.pdf 3]<br/>
 +
[[File:LaboratorioUno-AlgebraLineal.pdf]] [[Taller1|Punto 3 Taller 1]]-->
 +
</td>
 +
</tr>
  
 +
<tr>
 +
<td>4 28-Agosto</td><td>Angélica</td>
 +
<td>
 +
<ul>
 +
</li><li>Homogeneous Linear ODEs of Second Order
 +
</li><li>Homogeneous Linear ODEs with Constant Coefficients
 +
</li><li>Modeling of Free Oscillations of a Mass–Spring System
 +
</li><li>Differential Operators.
 +
</li><li>Euler–Cauchy Equations
 +
</li><li>Existence and Uniqueness of Solutions.
 +
</li><li>Nonhomogeneous ODEs
 +
</li><li>Modeling: Forced Oscillations.
 +
</ul>
 +
</td>
 +
<td></td>
 +
</tr>
 +
 +
<tr>
 +
<td>5 4-Sept</td><td>Jorge</td>
 +
<td>
 +
<ul>
 +
<li>Linear Algebra and systems of ordinary differential equations</li>
 +
<ol>
 +
<li>Spaces and subspaces.</li>
 +
<li>Lineal combination and space generation.</li>
 +
<li>lineal dependence and lineal independece.</li>
 +
<li>Basis and dimension</li>
 +
<li>Linear transformations.</li>
 +
<li>Eigen-values and eigen-vectors</li>
 +
</ol>
 +
</ul>
 +
</td>
 +
<td rowspan="4">
 +
<!--[http://mathinsight.org/applet/changing_surfaces_stokes_theorem Stokes theorem]<br/>
 +
[http://mathinsight.org/divergence_idea The idea of the divergence of a vector field]<br/>
 +
[http://mathinsight.org/divergence_subtleties Subtleties about divergence]<br/>
 +
[http://mathinsight.org/curl_idea The idea of the curl of a vector field]<br/>
 +
[http://mathinsight.org/curl_subtleties Subtleties about curl]<br/>
 +
[http://mathinsight.org/greens_theorem_idea The idea behind Green's theorem]-->
 +
</td>
 +
</tr>
  
 +
<tr>
 +
<td>6 11-Sept</td><td>Jorge</td>
 +
<td>
 +
<ul>
 +
<ol>
 +
<li>Matrix: Operations and properties.</li>
 +
<li>Resolve linear systems by Gauss and Gauss-Jordan methods.</li>
 +
<li>Resolve linear systems by inverse and Cramer's rule.</li>
 +
<li>Applications: Leonlief product supplies analysis.</li>
 +
</ol>
 +
</ul>
 +
</td>
 +
</tr>
 +
<tr>
 +
<td>7 18-Sept</td><td>Angélica</td>
 +
<td>
 +
<ul>
 +
<li>systems of ordinary differential equations.</li>
 +
<li> Homogeneous systems of ordinary differential equations.</li>
 +
<li>Resolve linear systems of differential equations .</li>
 +
<li>linearization of high order differential equations.</li>
 +
</ul>
 +
</td>
 +
</tr>
  
 +
<tr>
 +
<td>8 25 -Sept</td><td>Jorge and Angélica</td>
 +
<td>
 +
<ul>
 +
<li>LAB: EDOs with MatLab, practice session.</li>
 +
</ul>
 +
</td>
 +
</tr>
  
 +
<tr>
 +
<td>9 2 -Oct</td><td>Todos</td>
 +
<td>
 +
<ul>
 +
<li>TEST</li>
 +
</ul>
 +
</td>
 +
<td></td>
 +
</tr>
  
Sesión Encargado Temas
+
<tr>
1
+
<td>10 16 -Oct</td><td>Camilo</td>
30-Ene Todos, Darwin
+
<td>
Presentation
+
<ul>
- Matrices, Vectors: Addition and Scalar Multiplication
+
<li>Vectors in 2-Space and 3-Space.[[file:Vectors-ScalarFields.pdf]]</li>
- Matrix Multiplication
+
</ul>
- Linear Systems of Equations. Gauss Elimination
+
<ol>
- Solutions of Linear Systems: Existence, Uniqueness
+
<li>Inner Product (Dot Product).</li>
- Determinants. Cramer’s Rule
+
<li>Vector Product (Cross Product).</li>
- Inverse of a Matrix. Gauss–Jordan Elimination
+
</ol>
2
+
<ul>
6-Feb
+
<li>Vector and Scalar Functions and their Fields.</li>
Darwin
+
</ul>
 +
<ol>
 +
<li>Vector Calculus: Derivatives.</li>
 +
<li>Functions of Several Variables.</li>
 +
</ol>
 +
<td></td>
 +
</tr>
  
- Linear Independence. Rank of a Matrix. Vector Space
+
<tr>
- Vector Spaces, Inner Product Spaces, Linear Transformations
+
<td>11 23 -Oct</td><td>Camilo</td>
- The Matrix Eigenvalue Problem. Determining Eigenvalues and Eigenvectors
+
<td>
3
+
<ul>
13-Feb Darwin
+
<li>Gradient of a Scalar Field. Application in ecology:[[file:BIOS-83-97.pdf]] Taller: [[file:Taller-CalcVec2.pdf]]    Datos: [[file:data.txt]] Salida de zunzun.com: [[file:zunzunout.pdf]]</li>
LAB:  Linear algebra
+
<li>Directional Derivatives.</li>
4
+
<li>Divergence of a Vector Field.</li>
20-Feb Darwin
+
<li>Curl of a Vector Field.</li>
Test
+
<li>Lagrange multipliers.</li>
+
<li>Tutorial de cálculo vectorial con Matlab: [http://www2.math.umd.edu/~jmr/241/MATLABmaterials.html]  </li>
5
+
</ul>
27-Feb Camilo
+
</td>
- Vectors in 2-Space and 3-Space
+
<td></td>
- Inner Product (Dot Product), Vector Product (Cross Product)
+
</tr>
- Review of one variable Calculus
+
- Vector and Scalar Functions and Their Fields. Vector Calculus: Derivatives
+
6
+
6-Mar Camilo - Functions of Several Variables
+
- Gradient of a Scalar Field. Directional Derivative
+
- Divergence of a Vector Field
+
- Curl of a Vector Field
+
- Lagrange multipliers
+
7
+
13-Mar Camilo
+
- Line Integrals, Path Independence
+
- Calculus Review: Double Integrals.
+
  
8
+
 
20-Mar Camilo - Green’s Theorem in the Plane
+
 
- Surfaces for Surface Integrals
+
<!--
- Surface Integrals
+
<tr>
- Triple Integrals. Divergence Theorem of Gauss
+
<td>10 3-Abr</td><td>Camilo</td>
9
+
<td>
27-Mar Camilo
+
<ul>
LAB:  Vector calculus
+
<li>Test</li>
10
+
</ul>
3-Abr Camilo Test
+
</td>
 +
<td></td>
 +
</tr>
 +
 
 +
<tr>
 +
<td>11 10-Abr</td><td>Angélica</td>
 +
<td>
 +
<ul>
 +
<li>Basic Concepts. Modeling</li>
 +
<li>Geometric Meaning of y r ϭ f (x, y). Direction Fields, Euler’s Method</li>
 +
<li>Separable ODEs. Modeling</li>
 +
<li>Exact ODEs. Integrating Factors</li>
 +
<li>Linear ODEs. Bernoulli Equation. Population Dynamics</li>
 +
<li>Orthogonal Trajectories.</li>
 +
<li>Existence and Uniqueness of Solutions for Initial Value Problem</li>
 +
</ul>
 +
</td>
 +
<td></td>
 +
</tr>
 
 
11
+
<tr>
10-Abr Angelica - Basic Concepts. Modeling
+
<td>12 24-Abr</td><td>Angélica</td>
- Geometric Meaning of y r ϭ f (x, y). Direction Fields, Euler’s Method
+
<td>
- Separable ODEs. Modeling
+
<ul>
-  Exact ODEs. Integrating Factors
+
<li>Homogeneous Linear ODEs of Second Order</li>
- Linear ODEs. Bernoulli Equation. Population Dynamics
+
<li>Homogeneous Linear ODEs with Constant Coefficients</li>
- Orthogonal Trajectories.
+
<li>Modeling of Free Oscillations of a Mass–Spring System</li>
- Existence and Uniqueness of Solutions for Initial Value Problem
+
<li>Differential Operators.</li>
12
+
<li>Euler–Cauchy Equations</li>
24-Abr Angelica - Homogeneous Linear ODEs of Second Order
+
<li>Existence and Uniqueness of Solutions. Wronskian</li>
- Homogeneous Linear ODEs with Constant Coefficients
+
<li>Nonhomogeneous ODEs</li>
- Modeling of Free Oscillations of a Mass–Spring System
+
<li>Modelling: Forced Oscillations. </li>
- Differential Operators.
+
</ul>
- Euler–Cauchy Equations
+
</td>
- Existence and Uniqueness of Solutions. Wronskian
+
<td></td>
- Nonhomogeneous ODEs
+
</tr>
- Modeling: Forced Oscillations.  
+
 
13
+
<tr>
29-Abr* Angelica - Systems of ODEs
+
<td>13 29-Abr*</td><td>Angélica</td>
- Solution with special functions
+
<td>
14
+
<ul>
8-May Angelica LABORATORIO: Differential equations
+
<li>Systems of ODEs</li>
15
+
<li>Solution with special functions</li>
15-may Angelica - Basic Concepts of PDEs
+
</ul>
- Modeling: Vibrating String, Wave Equation
+
</td>
 +
<td></td>
 +
</tr>
 +
 
 +
<tr>
 +
<td>14 8-May</td><td>Angélica</td>
 +
<td>
 +
<ul>
 +
<li>LABORATORIO: Differential equations</li>
 +
</ul>
 +
</td>
 +
<td></td>
 +
</tr>
 +
 
 +
<tr>
 +
<td>15 15-may</td><td>Angélica</td>
 +
<td>
 +
<ul>
 +
<li>Basic Concepts of PDEs</li>
 +
<li>Modeling: Vibrating String, Wave Equation</li>
 +
</ul>
 +
</td>
 +
<td></td>
 +
</tr>
 +
 
 +
<tr>
 +
<td>16 22-May</td><td>Angélica</td>
 +
<td>
 +
<ul>
 +
<li>Test</li>
 +
</ul>
 +
</td>
 +
<td></td>
 +
</tr>
 +
-->
 +
</table>
 +
 
 +
== Versión en español ==
 +
 
 +
=== Objetivos ===
 +
* Fortalecer la formación matemática de los estudiantes 
 +
* Proporcionar  los fundamentos matemáticos necesarios para  abordar adecuadamente las temáticas propias  del modelado y simulación
 +
 
 +
 
 +
=== Competencias generadas ===
 +
==== Competencias interpretativas ====
 +
* Identificar las variables, constantes y parámetros que definen un sistema.
 +
* Leer, comprender e interpretar textos científicos con contenido matemático.
 +
* Asociar los resultados obtenidos a través del modelado con las características del sistema representado.
 +
* Expresar principios e hipótesis usando diferentes elementos del  lenguaje matemático.
 +
 
 +
==== Competencias argumentativas ====
 +
* Establecer y analizar relaciones que representan fenómenos, sistemas y/o procesos.
 +
* Seleccionar y utilizar métodos apropiados para  resolver problemas o sistemas.
 +
* Explicar ideas técnicas a través de textos, gráficas, ecuaciones e imágenes.
 +
 
 +
==== Competencias propositivas ====
 +
* Plantear  un modelo matemático adecuado a casos particulares o problemas típicos.
 +
* Realizar diferentes tipos de representaciones para un único sistema.
 +
 
 +
==== Contenido ====
 +
# SISTEMAS DE ECUACIONES LINEALES.
 +
## Matrices: operaciones y propiedades
 +
## Resolución de sistemas de ecuaciones por los métodos de Gauss y Gauss Jordan.
 +
## Resolución de sistemas de ecuaciones lineales utilizando la inversa y regla de Cramer.
 +
## Aplicaciones: Análisis de Insumo Producto de Leontief, Teoría de grafos y Cadenas de Markov.
 +
 
 +
# VECTORES EN Rn
 +
## Vectores en Rn
 +
## Operaciones entre vectores
 +
## Producto punto, norma y proyecciones
 +
## Producto cruz
 +
## Aplicaciones: Paralelismo y ortogonalidad de vectores, vectores de área y de superficie.
 +
 
 +
# ESPACIOS VECTORIALES
 +
## Espacios y sub-espacios
 +
## Combinación lineal y espacio generado
 +
## Dependencia e independencia lineal
 +
## Bases y dimensión
 +
## Transformaciones lineales.
 +
## Valores propios y vectores propios
 +
 
 +
# FUNCIONES DE UNA Y VARIAS VARIABLES
 +
## Generalidades de funciones en una variable
 +
## Generalidades de funciones en varias variables
 +
## Derivadas parciales, gradiente y derivadas direccionales
 +
## Optimización
 +
## Integración múltiple
 +
## Análisis vectorial
 +
 
 +
# ECUACIONES DIFERENCIALES
 +
## Ecuaciones diferenciales de primer orden
 +
## Ecuaciones de diferenciales de segundo orden
 +
## Sistemas de ecuaciones diferenciales
 +
## Solución mediante el método de transformadas
 +
## Introducción a las ecuaciones diferenciales parciales
 +
 
 +
=== Metodología ===
 +
* La enseñanza de este curso se realizará a través de clases teóricas y prácticas en  salas de cómputo.
 +
* En el desarrollo de las clases  prevalecerá  la conceptualización en los temas  a tratar  sobre las destrezas operativas que pueden trabajarse mediante Sistemas Algebraicos Computacionales SAC.
 +
* Durante el curso se hará énfasis  en la importancia de cada tema en la  formulación de modelos, considerando los diferentes campos de aplicación, más que en la implementación de algoritmos.
 +
 
 +
== Bibliography/Bibliografía ==
 +
 
 +
# Giordano, F., Fox, W., Horton, S., & Weir, M. (2009). '''A first course in mathematical modelling'' . Canada: Brooks/Cole Cengage Learning.
 +
# Grossman, S. (2008). '''Álgebra Lineal'''. México: Mc Graw Hill.
 +
# Kolman, B., & Hill, D. (2013). '''Álgebra Lineal. Fundamentos y apliaciones'''. Bogotá: Pearson.
 +
# Larson, R., & Edwards, B. H. (2010). '''Calculo 2 de Varias variables'''. China: Mc Graw Hill.
 +
# Meerschaaert, M. (2007). '''Mathematical Modeling'''. San Diego, United States of America: Elsevier Academic Press.
 +
# Zill, D. G. (2002). '''Ecuaciones diferenciales con aplicaciones de modelado'''. México: Cengage Learning.
 +
 
 +
 
 +
== Slides / Presentaciones ==
  
 +
# [[File:SemanaUno.pdf]]
 +
# [[File:SemanaDos.pdf]]
 +
# [[File:AlgLineal.pdf]]
 +
# [[File:taller-de-ecuaciones.pdf]]
 +
[https://sites.google.com/site/algoritmosyprogramacionuc/archivos/Laboratorio_Sistema.m?attredirects=0&d=1 link Laboratorio sistemas.m]
  
 +
== Matlab's Scripts ==
 +
=== Linear dependency ===
 +
<code>
 +
  % PRUEBA PARA MOSTRAR INDEPENDENCIA LINEAL<br/>
 +
  x = rand(1, 3)-0.5;<br/>
 +
  y = rand(1, 3)-0.5;<br/>
 +
  a = rand(10, 1)-0.5;<br/>
 +
  b = rand(10, 1)-0.5;<br/>
 +
  z = a*x + b*y;<br/>
 +
  hold off<br/>
 +
  quiver3(0,0,0,x(1),x(2),x(3), 'r');<br/>
 +
  hold on<br/>
 +
  t= zeros(10,3);<br/>
 +
  quiver3(0,0,0,y(1),y(2),y(3), 'b');<br/>
 +
  quiver3(t(:,1),t(:,2),t(:,3),z(:,1),z(:,2),z(:,3),'g');<br/>
 +
  title('Dependencia lineal x rojo, y azul, combinaciones aleatorias verde ')<br/>
 +
</code>
  
 +
=== Lineal transformations ===
 +
<code>
  
16
+
  %PRUEBAS CON EL DETERMINANTE EN MATRICES DE ESCALAMIENTO
22-May Angelica Test
+
  % construir el poligono con vertices x,y
 +
  x = [2 2 1 1 2 3 2  2  5 5 4 5 6 6 5 5 2];
 +
  y = [1 4 4 7 7 8 9 11 11 9 8 7 7 4 4 1 1];
 +
  x = x-3.5;
 +
  y = y-5.5;
 +
  hold off
 +
  plot(x, y, 'b')
 +
  title 'poligono original'
 +
  axis([-7 7 -11 11])
 +
  grid
 +
  pause
 +
  p = [x; y;];
 +
  S1 = [1 0; 0 2]
 +
  det_s1 = det(S1)
 +
  S2 = [sqrt(2) 0; 0 sqrt(2)]
 +
  det_s2 = det(S2)
 +
  S3 = [0.5 0; 0 0.5]
 +
  det_s3 = det(S3)
 +
  S4 = S3*S2;
 +
  det_s4 = det(S4)
 +
  S5 = [0.5 0; 0 2]
 +
  det_s5 = det(S5)
 +
  p1 = S2*p;
 +
  hold off
 +
  plot(x, y, 'b:')
 +
  hold on
 +
  plot(p1(1, :), p1(2, :), 'r')
 +
  title 'poligono escalado al doble'
 +
  axis([-7 7 -11 11])
 +
  grid
 +
  pause
 +
  p2 = S4*p;
 +
  hold off
 +
  plot(x, y, 'b:')
 +
  hold on
 +
  plot(p1(1, :), p1(2, :), 'b:')
 +
  plot(p2(1, :), p2(2, :), 'r')
 +
  title 'polígono escalado a la cuarta parte'
 +
  axis([-7 7 -11 11])
 +
  grid
 +
  pause
 +
  % PRUEBAS DE ACUMULAR LA ROTACION CON LA MULTIPLICACION
 +
  a = pi/4;
 +
  R = [cos(a) -sin(a); sin(a) cos(a)]
 +
  M = [1 0; 0 1];
 +
  for i=1:8
 +
    M = R*M;
 +
    p1 = M*p;
 +
    hold off
 +
    plot(x, y, 'b:')
 +
    hold on
 +
    plot(p1(1, :), p1(2, :), 'r')
 +
    title 'polígono rotacion acumulada'
 +
    axis([-7 7 -11 11])
 +
    grid
 +
    pause
 +
  end
 +
  % SINGULAR VALUE DECOMPOSITION PARA UNA MATRIZ GENERADA CON ROTACION Y ESCALAMIENTO
 +
  R = [0.8 0.0 0.6; 0 1 0; -0.6 0.0 0.8]
 +
  S = [0.5 0 0; 0 2 0; 0 0 1.5]
 +
  M = S*R;
 +
  [U, Z, V] = svd(M)
 +
  % ANIMACION 3D CON UNA MATRIZ DE ROTACION APLICADA A PUNTOS EN UNA SUPERFICIE
 +
  hold off
 +
  n = 400;
 +
  x = 2*(rand(1, n)-0.5);
 +
  y = 2*(rand(1, n)-0.5);
 +
  z = x.^2 - y.^2;
 +
  p = [x; y; z];
 +
  for i=1:180,
 +
    a = i*pi/90;
 +
    rx = [1 0 0; 0 cos(a) -sin(a); 0 sin(a) cos(a)];
 +
    pp = rx*p;
 +
    plot(pp(1,:), pp(2,:), 'r.')
 +
    axis([-1 1 -1 1])
 +
    pause(0.1)
 +
  end
 +
</code>

Latest revision as of 14:23, 10 November 2014

Logos-tadeo-central.png

Contents

[edit] English version

This is a basic subject on matrix theory and linear algebra. Emphasis is given to topics that will be useful in models and simulation for several disciplines. It includes systems of equations, vector spaces, determinants and eigenvalues.

[edit] Goals

  • Enhance the mathematics skills and fundaments.
  • Give enough mathematic basics to understand the topics of modelling and simulation systems.


[edit] Content

  • Vectorial calculus. One variable calculus.
    1. Review of one variable calculus.
    2. Function definition.
    3. Derivatives.
    4. Integrals.
  • First order differential equations.
    1. Basic Concepts. Modeling.
    2. Geometric Meaning of y r ϭ f (x, y). Direction Fields, Euler’s Method.
    3. Separable ODEs. Modeling.
    4. Exact ODEs. Integrating Factors.
    5. Linear ODEs. Bernoulli Equation. Population Dynamics.
    6. Orthogonal Trajectories.
    7. Existence and Uniqueness of Solutions for Initial Value Problem.
  • Second order differential equations.
    1. Homogeneous Linear ODEs of Second Order
    2. Homogeneous Linear ODEs with Constant Coefficients
    3. Modeling of Free Oscillations of a Mass–Spring System
    4. Differential Operators.
    5. Euler–Cauchy Equations
    6. Existence and Uniqueness of Solutions.
    7. Nonhomogeneous ODEs
    8. Modeling: Forced Oscillations.
  • Linear Algebra and systems of ordinary differential equations
    1. Spaces and subspaces.
    2. Lineal combination and space generation.
    3. lineal dependence and lineal independece.
    4. Basis and dimension
    5. Linear transformations.
    6. Eigen-values and eigen-vectors
    1. Matrix: Operations and properties.
    2. Resolve linear systems by Gauss and Gauss-Jordan methods.
    3. Resolve linear systems by inverse and Cramer's rule.
    4. Applications: Leonlief product supplies analysis.
    1. systems of ordinary differential equations.
    2. Homogeneous systems of ordinary differential equations.
    3. Resolve linear systems of differential equations .
    4. linearization of high order differential equations.
  • Vectorial calculus. Several variable functions.
    1. Vectors in 2-Space and 3-Space.
    2. Inner Product (Dot Product).
    3. Vector Product (Cross Product).
    4. Vector and Scalar Functions and their Fields.
    5. Vector Calculus: Derivatives.
    6. Functions of Several Variables.
    7. Gradient of a Scalar Field.
    8. Directional Derivatives.
    9. Divergence of a Vector Field.
    10. Curl of a Vector Field.
    11. Lagrange multipliers.
  • partial differential equations.
    1. Introduction to partial differential equations (PDE)
    2. Solution by transforms methods

[edit] Week activities

Session dateTeacherTopicExternal resources
1 - 31-JulioTodos, Camilo
  • Presentation
  • Vectorial calculus. One variable calculus.
    1. Review of one variable calculus.
    2. Function definition.
    3. Derivatives.
    4. Integrals.
2 14 AgostoCamilo
3 21-AgostoAngelica
  • First order differential equations.
    1. Basic Concepts. Modeling.
    2. Geometric Meaning of y r ϭ f (x, y). Direction Fields, Euler’s Method.
    3. Separable ODEs. Modeling.
    4. Exact ODEs. Integrating Factors.
    5. Linear ODEs. Bernoulli Equation. Population Dynamics.
    6. Orthogonal Trajectories.
    7. Existence and Uniqueness of Solutions for Initial Value Problem.
4 28-AgostoAngélica
  • Homogeneous Linear ODEs of Second Order
  • Homogeneous Linear ODEs with Constant Coefficients
  • Modeling of Free Oscillations of a Mass–Spring System
  • Differential Operators.
  • Euler–Cauchy Equations
  • Existence and Uniqueness of Solutions.
  • Nonhomogeneous ODEs
  • Modeling: Forced Oscillations.
5 4-SeptJorge
  • Linear Algebra and systems of ordinary differential equations
    1. Spaces and subspaces.
    2. Lineal combination and space generation.
    3. lineal dependence and lineal independece.
    4. Basis and dimension
    5. Linear transformations.
    6. Eigen-values and eigen-vectors
6 11-SeptJorge
    1. Matrix: Operations and properties.
    2. Resolve linear systems by Gauss and Gauss-Jordan methods.
    3. Resolve linear systems by inverse and Cramer's rule.
    4. Applications: Leonlief product supplies analysis.
7 18-SeptAngélica
  • systems of ordinary differential equations.
  • Homogeneous systems of ordinary differential equations.
  • Resolve linear systems of differential equations .
  • linearization of high order differential equations.
8 25 -SeptJorge and Angélica
  • LAB: EDOs with MatLab, practice session.
9 2 -OctTodos
  • TEST
10 16 -OctCamilo
  1. Inner Product (Dot Product).
  2. Vector Product (Cross Product).
  • Vector and Scalar Functions and their Fields.
  1. Vector Calculus: Derivatives.
  2. Functions of Several Variables.
11 23 -OctCamilo

[edit] Versión en español

[edit] Objetivos

  • Fortalecer la formación matemática de los estudiantes
  • Proporcionar los fundamentos matemáticos necesarios para abordar adecuadamente las temáticas propias del modelado y simulación


[edit] Competencias generadas

[edit] Competencias interpretativas

  • Identificar las variables, constantes y parámetros que definen un sistema.
  • Leer, comprender e interpretar textos científicos con contenido matemático.
  • Asociar los resultados obtenidos a través del modelado con las características del sistema representado.
  • Expresar principios e hipótesis usando diferentes elementos del lenguaje matemático.

[edit] Competencias argumentativas

  • Establecer y analizar relaciones que representan fenómenos, sistemas y/o procesos.
  • Seleccionar y utilizar métodos apropiados para resolver problemas o sistemas.
  • Explicar ideas técnicas a través de textos, gráficas, ecuaciones e imágenes.

[edit] Competencias propositivas

  • Plantear un modelo matemático adecuado a casos particulares o problemas típicos.
  • Realizar diferentes tipos de representaciones para un único sistema.

[edit] Contenido

  1. SISTEMAS DE ECUACIONES LINEALES.
    1. Matrices: operaciones y propiedades
    2. Resolución de sistemas de ecuaciones por los métodos de Gauss y Gauss Jordan.
    3. Resolución de sistemas de ecuaciones lineales utilizando la inversa y regla de Cramer.
    4. Aplicaciones: Análisis de Insumo Producto de Leontief, Teoría de grafos y Cadenas de Markov.
      1. VECTORES EN Rn
        1. Vectores en Rn
        2. Operaciones entre vectores
        3. Producto punto, norma y proyecciones
        4. Producto cruz
        5. Aplicaciones: Paralelismo y ortogonalidad de vectores, vectores de área y de superficie.
          1. ESPACIOS VECTORIALES
            1. Espacios y sub-espacios
            2. Combinación lineal y espacio generado
            3. Dependencia e independencia lineal
            4. Bases y dimensión
            5. Transformaciones lineales.
            6. Valores propios y vectores propios
              1. FUNCIONES DE UNA Y VARIAS VARIABLES
                1. Generalidades de funciones en una variable
                2. Generalidades de funciones en varias variables
                3. Derivadas parciales, gradiente y derivadas direccionales
                4. Optimización
                5. Integración múltiple
                6. Análisis vectorial
                  1. ECUACIONES DIFERENCIALES
                    1. Ecuaciones diferenciales de primer orden
                    2. Ecuaciones de diferenciales de segundo orden
                    3. Sistemas de ecuaciones diferenciales
                    4. Solución mediante el método de transformadas
                    5. Introducción a las ecuaciones diferenciales parciales
                    6. [edit] Metodología

                      • La enseñanza de este curso se realizará a través de clases teóricas y prácticas en salas de cómputo.
                      • En el desarrollo de las clases prevalecerá la conceptualización en los temas a tratar sobre las destrezas operativas que pueden trabajarse mediante Sistemas Algebraicos Computacionales SAC.
                      • Durante el curso se hará énfasis en la importancia de cada tema en la formulación de modelos, considerando los diferentes campos de aplicación, más que en la implementación de algoritmos.

                      [edit] Bibliography/Bibliografía

                      1. Giordano, F., Fox, W., Horton, S., & Weir, M. (2009). 'A first course in mathematical modelling . Canada: Brooks/Cole Cengage Learning.
                      2. Grossman, S. (2008). Álgebra Lineal. México: Mc Graw Hill.
                      3. Kolman, B., & Hill, D. (2013). Álgebra Lineal. Fundamentos y apliaciones. Bogotá: Pearson.
                      4. Larson, R., & Edwards, B. H. (2010). Calculo 2 de Varias variables. China: Mc Graw Hill.
                      5. Meerschaaert, M. (2007). Mathematical Modeling. San Diego, United States of America: Elsevier Academic Press.
                      6. Zill, D. G. (2002). Ecuaciones diferenciales con aplicaciones de modelado. México: Cengage Learning.


                      [edit] Slides / Presentaciones

                      1. File:SemanaUno.pdf
                      2. File:SemanaDos.pdf
                      3. File:AlgLineal.pdf
                      4. File:Taller-de-ecuaciones.pdf

                      link Laboratorio sistemas.m

                      [edit] Matlab's Scripts

                      [edit] Linear dependency

                       % PRUEBA PARA MOSTRAR INDEPENDENCIA LINEAL
                      x = rand(1, 3)-0.5;
                      y = rand(1, 3)-0.5;
                      a = rand(10, 1)-0.5;
                      b = rand(10, 1)-0.5;
                      z = a*x + b*y;
                      hold off
                      quiver3(0,0,0,x(1),x(2),x(3), 'r');
                      hold on
                      t= zeros(10,3);
                      quiver3(0,0,0,y(1),y(2),y(3), 'b');
                      quiver3(t(:,1),t(:,2),t(:,3),z(:,1),z(:,2),z(:,3),'g');
                      title('Dependencia lineal x rojo, y azul, combinaciones aleatorias verde ')

                      [edit] Lineal transformations

                       %PRUEBAS CON EL DETERMINANTE EN MATRICES DE ESCALAMIENTO
                       % construir el poligono con vertices x,y 
                       x = [2 2 1 1 2 3 2  2  5 5 4 5 6 6 5 5 2];
                       y = [1 4 4 7 7 8 9 11 11 9 8 7 7 4 4 1 1];
                       x = x-3.5;
                       y = y-5.5;
                       hold off
                       plot(x, y, 'b')
                       title 'poligono original'
                       axis([-7 7 -11 11])
                       grid
                       pause
                       p = [x; y;];
                       S1 = [1 0; 0 2]
                       det_s1 = det(S1)
                       S2 = [sqrt(2) 0; 0 sqrt(2)]
                       det_s2 = det(S2)
                       S3 = [0.5 0; 0 0.5]
                       det_s3 = det(S3)
                       S4 = S3*S2;
                       det_s4 = det(S4)
                       S5 = [0.5 0; 0 2]
                       det_s5 = det(S5)
                       p1 = S2*p;
                       hold off
                       plot(x, y, 'b:')
                       hold on
                       plot(p1(1, :), p1(2, :), 'r')
                       title 'poligono escalado al doble'
                       axis([-7 7 -11 11])
                       grid
                       pause
                       p2 = S4*p;
                       hold off
                       plot(x, y, 'b:')
                       hold on
                       plot(p1(1, :), p1(2, :), 'b:')
                       plot(p2(1, :), p2(2, :), 'r')
                       title 'polígono escalado a la cuarta parte'
                       axis([-7 7 -11 11])
                       grid
                       pause
                       % PRUEBAS DE ACUMULAR LA ROTACION CON LA MULTIPLICACION 
                       a = pi/4;
                       R = [cos(a) -sin(a); sin(a) cos(a)]
                       M = [1 0; 0 1];
                       for i=1:8
                         M = R*M;
                         p1 = M*p;
                         hold off
                         plot(x, y, 'b:')
                         hold on
                         plot(p1(1, :), p1(2, :), 'r')
                         title 'polígono rotacion acumulada'
                         axis([-7 7 -11 11])
                         grid
                         pause	
                       end
                       % SINGULAR VALUE DECOMPOSITION PARA UNA MATRIZ GENERADA CON ROTACION Y ESCALAMIENTO
                       R = [0.8 0.0 0.6; 0 1 0; -0.6 0.0 0.8]
                       S = [0.5 0 0; 0 2 0; 0 0 1.5]
                       M = S*R;
                       [U, Z, V] = svd(M)
                       % ANIMACION 3D CON UNA MATRIZ DE ROTACION APLICADA A PUNTOS EN UNA SUPERFICIE
                       hold off 
                       n = 400;
                       x = 2*(rand(1, n)-0.5);
                       y = 2*(rand(1, n)-0.5);
                       z = x.^2 - y.^2;
                       p = [x; y; z];
                       for i=1:180,
                         a = i*pi/90;
                         rx = [1 0 0; 0 cos(a) -sin(a); 0 sin(a) cos(a)];
                         pp = rx*p;
                         plot(pp(1,:), pp(2,:), 'r.')
                         axis([-1 1 -1 1])
                         pause(0.1)
                       end