Personal tools

MMS: Mathematical Foundations of M&S

From hpcwiki

Revision as of 14:23, 10 November 2014 by Cespejo (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Logos-tadeo-central.png

Contents

English version

This is a basic subject on matrix theory and linear algebra. Emphasis is given to topics that will be useful in models and simulation for several disciplines. It includes systems of equations, vector spaces, determinants and eigenvalues.

Goals

  • Enhance the mathematics skills and fundaments.
  • Give enough mathematic basics to understand the topics of modelling and simulation systems.


Content

  • Vectorial calculus. One variable calculus.
    1. Review of one variable calculus.
    2. Function definition.
    3. Derivatives.
    4. Integrals.
  • First order differential equations.
    1. Basic Concepts. Modeling.
    2. Geometric Meaning of y r ϭ f (x, y). Direction Fields, Euler’s Method.
    3. Separable ODEs. Modeling.
    4. Exact ODEs. Integrating Factors.
    5. Linear ODEs. Bernoulli Equation. Population Dynamics.
    6. Orthogonal Trajectories.
    7. Existence and Uniqueness of Solutions for Initial Value Problem.
  • Second order differential equations.
    1. Homogeneous Linear ODEs of Second Order
    2. Homogeneous Linear ODEs with Constant Coefficients
    3. Modeling of Free Oscillations of a Mass–Spring System
    4. Differential Operators.
    5. Euler–Cauchy Equations
    6. Existence and Uniqueness of Solutions.
    7. Nonhomogeneous ODEs
    8. Modeling: Forced Oscillations.
  • Linear Algebra and systems of ordinary differential equations
    1. Spaces and subspaces.
    2. Lineal combination and space generation.
    3. lineal dependence and lineal independece.
    4. Basis and dimension
    5. Linear transformations.
    6. Eigen-values and eigen-vectors
    1. Matrix: Operations and properties.
    2. Resolve linear systems by Gauss and Gauss-Jordan methods.
    3. Resolve linear systems by inverse and Cramer's rule.
    4. Applications: Leonlief product supplies analysis.
    1. systems of ordinary differential equations.
    2. Homogeneous systems of ordinary differential equations.
    3. Resolve linear systems of differential equations .
    4. linearization of high order differential equations.
  • Vectorial calculus. Several variable functions.
    1. Vectors in 2-Space and 3-Space.
    2. Inner Product (Dot Product).
    3. Vector Product (Cross Product).
    4. Vector and Scalar Functions and their Fields.
    5. Vector Calculus: Derivatives.
    6. Functions of Several Variables.
    7. Gradient of a Scalar Field.
    8. Directional Derivatives.
    9. Divergence of a Vector Field.
    10. Curl of a Vector Field.
    11. Lagrange multipliers.
  • partial differential equations.
    1. Introduction to partial differential equations (PDE)
    2. Solution by transforms methods

Week activities

Session dateTeacherTopicExternal resources
1 - 31-JulioTodos, Camilo
  • Presentation
  • Vectorial calculus. One variable calculus.
    1. Review of one variable calculus.
    2. Function definition.
    3. Derivatives.
    4. Integrals.
2 14 AgostoCamilo
3 21-AgostoAngelica
  • First order differential equations.
    1. Basic Concepts. Modeling.
    2. Geometric Meaning of y r ϭ f (x, y). Direction Fields, Euler’s Method.
    3. Separable ODEs. Modeling.
    4. Exact ODEs. Integrating Factors.
    5. Linear ODEs. Bernoulli Equation. Population Dynamics.
    6. Orthogonal Trajectories.
    7. Existence and Uniqueness of Solutions for Initial Value Problem.
4 28-AgostoAngélica
  • Homogeneous Linear ODEs of Second Order
  • Homogeneous Linear ODEs with Constant Coefficients
  • Modeling of Free Oscillations of a Mass–Spring System
  • Differential Operators.
  • Euler–Cauchy Equations
  • Existence and Uniqueness of Solutions.
  • Nonhomogeneous ODEs
  • Modeling: Forced Oscillations.
5 4-SeptJorge
  • Linear Algebra and systems of ordinary differential equations
    1. Spaces and subspaces.
    2. Lineal combination and space generation.
    3. lineal dependence and lineal independece.
    4. Basis and dimension
    5. Linear transformations.
    6. Eigen-values and eigen-vectors
6 11-SeptJorge
    1. Matrix: Operations and properties.
    2. Resolve linear systems by Gauss and Gauss-Jordan methods.
    3. Resolve linear systems by inverse and Cramer's rule.
    4. Applications: Leonlief product supplies analysis.
7 18-SeptAngélica
  • systems of ordinary differential equations.
  • Homogeneous systems of ordinary differential equations.
  • Resolve linear systems of differential equations .
  • linearization of high order differential equations.
8 25 -SeptJorge and Angélica
  • LAB: EDOs with MatLab, practice session.
9 2 -OctTodos
  • TEST
10 16 -OctCamilo
  1. Inner Product (Dot Product).
  2. Vector Product (Cross Product).
  • Vector and Scalar Functions and their Fields.
  1. Vector Calculus: Derivatives.
  2. Functions of Several Variables.
11 23 -OctCamilo

Versión en español

Objetivos

  • Fortalecer la formación matemática de los estudiantes
  • Proporcionar los fundamentos matemáticos necesarios para abordar adecuadamente las temáticas propias del modelado y simulación


Competencias generadas

Competencias interpretativas

  • Identificar las variables, constantes y parámetros que definen un sistema.
  • Leer, comprender e interpretar textos científicos con contenido matemático.
  • Asociar los resultados obtenidos a través del modelado con las características del sistema representado.
  • Expresar principios e hipótesis usando diferentes elementos del lenguaje matemático.

Competencias argumentativas

  • Establecer y analizar relaciones que representan fenómenos, sistemas y/o procesos.
  • Seleccionar y utilizar métodos apropiados para resolver problemas o sistemas.
  • Explicar ideas técnicas a través de textos, gráficas, ecuaciones e imágenes.

Competencias propositivas

  • Plantear un modelo matemático adecuado a casos particulares o problemas típicos.
  • Realizar diferentes tipos de representaciones para un único sistema.

Contenido

  1. SISTEMAS DE ECUACIONES LINEALES.
    1. Matrices: operaciones y propiedades
    2. Resolución de sistemas de ecuaciones por los métodos de Gauss y Gauss Jordan.
    3. Resolución de sistemas de ecuaciones lineales utilizando la inversa y regla de Cramer.
    4. Aplicaciones: Análisis de Insumo Producto de Leontief, Teoría de grafos y Cadenas de Markov.
  1. VECTORES EN Rn
    1. Vectores en Rn
    2. Operaciones entre vectores
    3. Producto punto, norma y proyecciones
    4. Producto cruz
    5. Aplicaciones: Paralelismo y ortogonalidad de vectores, vectores de área y de superficie.
  1. ESPACIOS VECTORIALES
    1. Espacios y sub-espacios
    2. Combinación lineal y espacio generado
    3. Dependencia e independencia lineal
    4. Bases y dimensión
    5. Transformaciones lineales.
    6. Valores propios y vectores propios
  1. FUNCIONES DE UNA Y VARIAS VARIABLES
    1. Generalidades de funciones en una variable
    2. Generalidades de funciones en varias variables
    3. Derivadas parciales, gradiente y derivadas direccionales
    4. Optimización
    5. Integración múltiple
    6. Análisis vectorial
  1. ECUACIONES DIFERENCIALES
    1. Ecuaciones diferenciales de primer orden
    2. Ecuaciones de diferenciales de segundo orden
    3. Sistemas de ecuaciones diferenciales
    4. Solución mediante el método de transformadas
    5. Introducción a las ecuaciones diferenciales parciales

Metodología

  • La enseñanza de este curso se realizará a través de clases teóricas y prácticas en salas de cómputo.
  • En el desarrollo de las clases prevalecerá la conceptualización en los temas a tratar sobre las destrezas operativas que pueden trabajarse mediante Sistemas Algebraicos Computacionales SAC.
  • Durante el curso se hará énfasis en la importancia de cada tema en la formulación de modelos, considerando los diferentes campos de aplicación, más que en la implementación de algoritmos.

Bibliography/Bibliografía

  1. Giordano, F., Fox, W., Horton, S., & Weir, M. (2009). 'A first course in mathematical modelling . Canada: Brooks/Cole Cengage Learning.
  2. Grossman, S. (2008). Álgebra Lineal. México: Mc Graw Hill.
  3. Kolman, B., & Hill, D. (2013). Álgebra Lineal. Fundamentos y apliaciones. Bogotá: Pearson.
  4. Larson, R., & Edwards, B. H. (2010). Calculo 2 de Varias variables. China: Mc Graw Hill.
  5. Meerschaaert, M. (2007). Mathematical Modeling. San Diego, United States of America: Elsevier Academic Press.
  6. Zill, D. G. (2002). Ecuaciones diferenciales con aplicaciones de modelado. México: Cengage Learning.


Slides / Presentaciones

  1. File:SemanaUno.pdf
  2. File:SemanaDos.pdf
  3. File:AlgLineal.pdf
  4. File:Taller-de-ecuaciones.pdf

link Laboratorio sistemas.m

Matlab's Scripts

Linear dependency

 % PRUEBA PARA MOSTRAR INDEPENDENCIA LINEAL
x = rand(1, 3)-0.5;
y = rand(1, 3)-0.5;
a = rand(10, 1)-0.5;
b = rand(10, 1)-0.5;
z = a*x + b*y;
hold off
quiver3(0,0,0,x(1),x(2),x(3), 'r');
hold on
t= zeros(10,3);
quiver3(0,0,0,y(1),y(2),y(3), 'b');
quiver3(t(:,1),t(:,2),t(:,3),z(:,1),z(:,2),z(:,3),'g');
title('Dependencia lineal x rojo, y azul, combinaciones aleatorias verde ')

Lineal transformations

 %PRUEBAS CON EL DETERMINANTE EN MATRICES DE ESCALAMIENTO
 % construir el poligono con vertices x,y 
 x = [2 2 1 1 2 3 2  2  5 5 4 5 6 6 5 5 2];
 y = [1 4 4 7 7 8 9 11 11 9 8 7 7 4 4 1 1];
 x = x-3.5;
 y = y-5.5;
 hold off
 plot(x, y, 'b')
 title 'poligono original'
 axis([-7 7 -11 11])
 grid
 pause
 p = [x; y;];
 S1 = [1 0; 0 2]
 det_s1 = det(S1)
 S2 = [sqrt(2) 0; 0 sqrt(2)]
 det_s2 = det(S2)
 S3 = [0.5 0; 0 0.5]
 det_s3 = det(S3)
 S4 = S3*S2;
 det_s4 = det(S4)
 S5 = [0.5 0; 0 2]
 det_s5 = det(S5)
 p1 = S2*p;
 hold off
 plot(x, y, 'b:')
 hold on
 plot(p1(1, :), p1(2, :), 'r')
 title 'poligono escalado al doble'
 axis([-7 7 -11 11])
 grid
 pause
 p2 = S4*p;
 hold off
 plot(x, y, 'b:')
 hold on
 plot(p1(1, :), p1(2, :), 'b:')
 plot(p2(1, :), p2(2, :), 'r')
 title 'polígono escalado a la cuarta parte'
 axis([-7 7 -11 11])
 grid
 pause
 % PRUEBAS DE ACUMULAR LA ROTACION CON LA MULTIPLICACION 
 a = pi/4;
 R = [cos(a) -sin(a); sin(a) cos(a)]
 M = [1 0; 0 1];
 for i=1:8
   M = R*M;
   p1 = M*p;
   hold off
   plot(x, y, 'b:')
   hold on
   plot(p1(1, :), p1(2, :), 'r')
   title 'polígono rotacion acumulada'
   axis([-7 7 -11 11])
   grid
   pause	
 end
 % SINGULAR VALUE DECOMPOSITION PARA UNA MATRIZ GENERADA CON ROTACION Y ESCALAMIENTO
 R = [0.8 0.0 0.6; 0 1 0; -0.6 0.0 0.8]
 S = [0.5 0 0; 0 2 0; 0 0 1.5]
 M = S*R;
 [U, Z, V] = svd(M)
 % ANIMACION 3D CON UNA MATRIZ DE ROTACION APLICADA A PUNTOS EN UNA SUPERFICIE
 hold off 
 n = 400;
 x = 2*(rand(1, n)-0.5);
 y = 2*(rand(1, n)-0.5);
 z = x.^2 - y.^2;
 p = [x; y; z];
 for i=1:180,
   a = i*pi/90;
   rx = [1 0 0; 0 cos(a) -sin(a); 0 sin(a) cos(a)];
   pp = rx*p;
   plot(pp(1,:), pp(2,:), 'r.')
   axis([-1 1 -1 1])
   pause(0.1)
 end