
hen hackers leaked thousands of 
e-mails from the Climatic Research 
Unit (CRU) at the University of 
East Anglia in Norwich, UK, last 

year, global-warming sceptics pored over the  
documents for signs that researchers had 
manipulated data. No such evidence emerged, 
but the e-mails did reveal another problem — 
one described by a CRU employee named 
“Harry”, who often wrote of his wrestling 
matches with wonky computer software. 

“Yup, my awful programming strikes again,” 
Harry lamented in one of his notes, as he 
attempted to correct a code analysing weather-
station data from Mexico.

Although Harry’s frustrations did not ulti-
mately compromise CRU’s work, his difficul-
ties will strike a chord with scientists in a wide 
range of disciplines who do a large amount of 
coding. Researchers are spending more and 
more time writing computer software to model 

biological structures, simulate the early evolu-
tion of the Universe and analyse past climate 
data, among other topics. But programming 
experts have little faith that most scientists are 
up to the task.

A quarter of a century ago, most of the com-
puting work done by scientists was relatively 
straightforward. But as computers and pro-
gramming tools have grown more complex, 
scientists have hit a “steep learning curve”, says 
James Hack, director of the US National Center 
for Computational Sciences at Oak Ridge 
National Laboratory in Tennessee. “The level 
of effort and skills needed to keep up aren’t in 
the wheelhouse of the average scientist.”

As a general rule, researchers do not test or 
document their programs rigorously, and they 
rarely release their codes, making it almost 
impossible to reproduce and verify published 
results generated by scientific software, say 
computer scientists. At best, poorly written 
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programs cause researchers such as Harry 
to waste valuable time and energy. But the  
coding problems can sometimes cause sub-
stantial harm, and have forced some scientists 
to retract papers. 

As recognition of these issues has grown, 
software experts and scientists have started 
exploring ways to improve the codes used 
in science. Some efforts teach researchers 
important programming skills, whereas oth-
ers encourage collaboration between scientists 
and software engineers, and teach researchers 
to be more open about their code. 

a proper educatIon
Greg Wilson, a computer scientist in Toronto, 
Canada, who heads Software Carpentry — an 
online course aimed at improving the comput-
ing skills of scientists — says that he woke up to 
the problem in the 1980s, when he was work-
ing at a physics super computing facility at the 
University of Edinburgh, UK. After a series of 
small mishaps, he realized that, without formal 
training in programming, it was easy for sci-
entists trying to address some of the Universe’s 
biggest questions to inadvertently introduce 
errors into their codes, potentially “doing more 
harm than good”.

After decades griping about the poor coding 
skills of scientists he knew, Wilson decided to 

see how widespread the prob-
lem was. In 2008, he and his 
colleagues conducted an online 
survey of almost 2,000 research-
ers, from students to senior aca-
demics, who were working with 
computers in a range of sciences. 
What he found was worse than 
he had anticipated1 (see ‘Scien-
tists and their software’). “There 
are terrifying statistics showing 
that almost all of what scien-
tists know about coding is self-
taught,” says Wilson. “They just 
don’t know how bad they are.”

As a result, codes may be 
riddled with tiny errors that 
do not cause the program to 
break down, but may drasti-
cally change the scientific results 
that it spits out. One such error 
tripped up a structural-biology 
group led by Geoffrey Chang 
of the Scripps Research Insti-
tute in La Jolla, California. In 
2006, the team realized that a 
computer program supplied by 
another lab had flipped a minus 
sign, which in turn reversed two 
columns of input data, causing 
protein crystal structures that 
the group had derived to be 

inverted. Chang says that the other lab provided 
the code with the best intentions, and “you just 
trust the code to do the right job”. His group 
was forced to retract five papers published in 
Science, the Journal of Molecular Biology and 
Proceedings of the National Academy of Sciences, 
and now triple checks everything, he says. 

“How many fields have been held back, and 
how many people have had their careers dis-
rupted, because of a buggy program?” asks 
Wilson.

More-rigorous testing could help. Diane 
Kelly, a computer scientist at the Royal Mili-
tary College of Canada in Kingston, Ontario, 
says the problem is that scientists rely on “vali-
dation testing” — looking to see whether the 
answer that the code produces roughly matches 
what the scientists expect — and this can miss 
important errors2. The software industry relies 
on a different approach: breaking codes into 
manageable chunks and testing each piece 
individually, then visually inspecting the lines 
of code that stitch these chunks together (see 
‘Practicing safe software’).

Many programmers in industry are also 
trained to annotate their code clearly, so that 
others can understand its function and eas-
ily build on it. But scientists often lack these 
communication and documentation skills. 
Even if researchers lift a whole working code 

and reuse it, rather than writing their own, 
they can apply the program incorrectly if it 
lacks clear documentation. Aaron Darling, a 
computational biologist at the University of 
California, Davis, unwittingly caused such a 
mistake with his own computer code for com-
paring genomes to reconstruct evolutionary 
relationships. He had designed the program 
to work only with closely related organisms, 
but discovered that an independent group 
had used it to look at sequences far outside the 
code’s working range.

“It was lucky that I came across it, because 
their published results were totally wrong, but 
they couldn’t know that because I hadn’t clearly 
documented how my code worked,” says  
Darling. “It’s not something that I am proud of, 
but I am careful to be more clear now.” 

SlayIng the MonSter
Problems created by bad documentation are 
further amplified when successful codes are 
modified by others to fit new purposes. The 
result is the bane of many a graduate student 
or postdoc’s life: the ‘monster code’. Sometimes 
decades old, these codes are notoriously messy 
and become progressively more nightmarish to 
handle, say computer scientists. 

“You do have some successes, but you also 
end up with a huge stinking heap of software 
that doesn’t work very well,” says Darling.

The mangled coding of these monsters can 
sometimes make it difficult to check for errors. 
One example is a piece of code written to ana-
lyse the products of high-energy collisions at 
the Large Hadron Collider particle accelerator 
at CERN, Europe’s particle-physics laboratory 
near Geneva, Switzerland. The code had been 
developed over more than a decade by 600 
people, “some of whom are excellent program-
mers and others who do not really know how 
to code very well”, says David Rousseau, soft-
ware co ordinator for the ATLAS experiment at 
CERN. Wilson and his students tried to test the 
program, but they could not get very far: the 
code would not even run on their machines. 

Rousseau says that the ATLAS group can test 
the software only on the Linux operating sys-
tem at the moment, but is striving to make the 
code compatible with Mac computers. This is 
important, he says, “because different platforms 
expose different types of errors that may other-

wise be overlooked”.
Some software devel-

opers have found ways 
to combat the growth 
of monster code. One 
example is the Visuali-
zation Toolkit, an open-
source, freely avail  
able software system 
for three-dimensional 
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computer graphics. People can 
modify the software as they wish, 
and it is rerun each night on every 
computing platform that supports 
it, with the results published on the 
web. The process ensures that the 
software will work the same way 
on different systems. 

That kind of openness has yet 
to infiltrate the scientific research 
world, where many leading science 
journals, including Nature, Science 
and Proceedings of the National 
Academy of Sciences, do not insist 
that authors make their code avail-
able. Rather, they require that 
authors provide enough informa-
tion for results to be reproduced.

the Search for SolutIonS
In November 2009, a group of sci-
entists, lawyers, journal editors, and 
funding representatives gathered for 
the Yale Law School Data and Code 
Sharing Roundtable in New Haven, 
Connecticut, where they recom-
mended that scientists go further 
by providing links to the source-
code and the data used to generate 
results when publishing. Although 
a step in the right direction, such 
requirements don’t always solve 
the problem. Since 1996, The Journal of Money, 
Credit and Banking has required researchers to 
upload their codes and data to an archive. But a 
2006 study revealed that of 150 papers submit-
ted to the journal over the preceding decade 
that fell under this requirement, results could 
be independently replicated with the materials 
provided for fewer than 15 (ref. 3).

Proponents of openness argue that research-
ers seeking to replicate published results need 
access to the original software, but others say 
that more transparency may not help much. 
Martin Rees, president of the Royal Society 
in London, says it would be too much to ask 
reviewers to check code line by line. And in his 
own field of astro physics, results can really be 
trusted only in cases in which a number of dif-
ferent groups have written independent codes 
to perform the same task and found similar 
results. Still, he acknowledges that “how to 
trust unique codes remains an issue”.

There are signs that scientific leaders are now 
taking notice of these concerns. In 2009, the UK 
Engineering and Physical Sciences Research 
Council put out a call for 
help for scientists trying 
to create usable software, 
which led to the forma-
tion of the Software Sus-
tainability Institute (SSI) 

at the University of Edinburgh. The SSI unites 
trained software developers with scientists 
to help them add new lines to existing codes, 
allowing them to tackle extra tasks without the 
programs turning into monsters. They also try 
to share their products across disciplines, says 
Neil Chue Hong, the SSI’s director. For instance, 
they recently helped build a code to query 
clinical records and help monitor the spread 
of disease. They are now sharing the structure 
of that code with researchers who are trying to 
use police records to identify crime hot spots. 
“It stops researchers wasting time reinventing 
the wheel for each new application,” says Chue 
Hong.

Another solution is to bring trained com-
puter scientists into research groups, either 
permanently or as part of temporary alliances. 
Software developer Nick Barnes has set up the 
Climate Code Foundation, based in Sheffield, 
UK, to help climate researchers. He was moti-
vated by problems with NASA’s Surface Tem-
perature Analysis software, which was released 
to the public in 2007. Critics complained that 
the program, written in the scientific pro-
gramming language Fortran, would not work 
on their machines and they could therefore 
not trust what it said about global warming. In 
consultation with NASA researchers, Barnes 
rewrote the code in a newer, more transparent 

programming language — Python 
— reducing its length and mak-
ing it easier for people who aren't 
software experts to understand 
how it functions. “Because of the 
immense public interest and the 
important policy issues at stake, 
it was worth taking the time to do 
that,” says Barnes. His new code 
shows the same general warming 
trend as the original program. 

In the long term, though, Barnes 
says that there needs to be a change 
in the way that science students are 
trained. He cites Wilson’s online 
Software Carpentry course as a 
good model for how this can be 
done, to equip students with cod-
ing skills. Wilson developed the 
week-long course to introduce sci-
ence graduate students to tools that 
have been software-industry stand-
ards for 30 years — such as ‘version 
control’, which allows multiple pro-
grammers to make changes to the 
same code, while keeping track of 
all changes.

Science administrators also need 
to value programming skills more 
highly, says David Gavaghan, a 
computational biologist at the Uni-
versity of Oxford, UK. “There needs 

to be a real shift in mindset away from worry-
ing about how to get published in Nature and 
towards thinking about how to reward work 
that will be useful to the wider community.”

Gavaghan now uses the software industry’s 
‘master–apprentice’ approach to train gradu-
ate students in his lab. New software projects 
are split up into bite-sized chunks, with each 
segment assigned to a pair of programmers — 
one experienced and one novice — who work 
together on it. “It forces students to become 
consistent code-builders,” says Gavaghan. 

Bringing industrial software-development 
practices into the lab cannot come too soon, 
says Wilson. The CRU e-mail affair was a 
warning to scientists to get their houses in 
order, he says. “To all scientists out there, ask 
yourselves what you would do if, tomorrow, 
some Republican senator trains the spotlight 
on you and decides to turn you into a politi-
cal football. Could your code stand up to 
attack?” ■ See World VieW, p.753

Zeeya Merali is a freelance writer in London.
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