
hen hackers leaked thousands of
e-mails from the Climatic Research
Unit (CRU) at the University of
East Anglia in Norwich, UK, last

year, global-warming sceptics pored over the
documents for signs that researchers had
manipulated data. No such evidence emerged,
but the e-mails did reveal another problem —
one described by a CRU employee named
“Harry”, who often wrote of his wrestling
matches with wonky computer software.

“Yup, my awful programming strikes again,”
Harry lamented in one of his notes, as he
attempted to correct a code analysing weather-
station data from Mexico.

Although Harry’s frustrations did not ulti-
mately compromise CRU’s work, his difficul-
ties will strike a chord with scientists in a wide
range of disciplines who do a large amount of
coding. Researchers are spending more and
more time writing computer software to model

biological structures, simulate the early evolu-
tion of the Universe and analyse past climate
data, among other topics. But programming
experts have little faith that most scientists are
up to the task.

A quarter of a century ago, most of the com-
puting work done by scientists was relatively
straightforward. But as computers and pro-
gramming tools have grown more complex,
scientists have hit a “steep learning curve”, says
James Hack, director of the US National Center
for Computational Sciences at Oak Ridge
National Laboratory in Tennessee. “The level
of effort and skills needed to keep up aren’t in
the wheelhouse of the average scientist.”

As a general rule, researchers do not test or
document their programs rigorously, and they
rarely release their codes, making it almost
impossible to reproduce and verify published
results generated by scientific software, say
computer scientists. At best, poorly written

B y Z e e y a M e r a l I

1 4 o c t o b e r 2 0 1 0 | V o L 4 6 7 | N A t U r e | 7 7 5
© 20 Macmillan Publishers Limited. All rights reserved10

programs cause researchers such as Harry
to waste valuable time and energy. But the
coding problems can sometimes cause sub-
stantial harm, and have forced some scientists
to retract papers.

As recognition of these issues has grown,
software experts and scientists have started
exploring ways to improve the codes used
in science. Some efforts teach researchers
important programming skills, whereas oth-
ers encourage collaboration between scientists
and software engineers, and teach researchers
to be more open about their code.

a proper educatIon
Greg Wilson, a computer scientist in Toronto,
Canada, who heads Software Carpentry — an
online course aimed at improving the comput-
ing skills of scientists — says that he woke up to
the problem in the 1980s, when he was work-
ing at a physics super computing facility at the
University of Edinburgh, UK. After a series of
small mishaps, he realized that, without formal
training in programming, it was easy for sci-
entists trying to address some of the Universe’s
biggest questions to inadvertently introduce
errors into their codes, potentially “doing more
harm than good”.

After decades griping about the poor coding
skills of scientists he knew, Wilson decided to

see how widespread the prob-
lem was. In 2008, he and his
colleagues conducted an online
survey of almost 2,000 research-
ers, from students to senior aca-
demics, who were working with
computers in a range of sciences.
What he found was worse than
he had anticipated1 (see ‘Scien-
tists and their software’). “There
are terrifying statistics showing
that almost all of what scien-
tists know about coding is self-
taught,” says Wilson. “They just
don’t know how bad they are.”

As a result, codes may be
riddled with tiny errors that
do not cause the program to
break down, but may drasti-
cally change the scientific results
that it spits out. One such error
tripped up a structural-biology
group led by Geoffrey Chang
of the Scripps Research Insti-
tute in La Jolla, California. In
2006, the team realized that a
computer program supplied by
another lab had flipped a minus
sign, which in turn reversed two
columns of input data, causing
protein crystal structures that
the group had derived to be

inverted. Chang says that the other lab provided
the code with the best intentions, and “you just
trust the code to do the right job”. His group
was forced to retract five papers published in
Science, the Journal of Molecular Biology and
Proceedings of the National Academy of Sciences,
and now triple checks everything, he says.

“How many fields have been held back, and
how many people have had their careers dis-
rupted, because of a buggy program?” asks
Wilson.

More-rigorous testing could help. Diane
Kelly, a computer scientist at the Royal Mili-
tary College of Canada in Kingston, Ontario,
says the problem is that scientists rely on “vali-
dation testing” — looking to see whether the
answer that the code produces roughly matches
what the scientists expect — and this can miss
important errors2. The software industry relies
on a different approach: breaking codes into
manageable chunks and testing each piece
individually, then visually inspecting the lines
of code that stitch these chunks together (see
‘Practicing safe software’).

Many programmers in industry are also
trained to annotate their code clearly, so that
others can understand its function and eas-
ily build on it. But scientists often lack these
communication and documentation skills.
Even if researchers lift a whole working code

and reuse it, rather than writing their own,
they can apply the program incorrectly if it
lacks clear documentation. Aaron Darling, a
computational biologist at the University of
California, Davis, unwittingly caused such a
mistake with his own computer code for com-
paring genomes to reconstruct evolutionary
relationships. He had designed the program
to work only with closely related organisms,
but discovered that an independent group
had used it to look at sequences far outside the
code’s working range.

“It was lucky that I came across it, because
their published results were totally wrong, but
they couldn’t know that because I hadn’t clearly
documented how my code worked,” says
Darling. “It’s not something that I am proud of,
but I am careful to be more clear now.”

SlayIng the MonSter
Problems created by bad documentation are
further amplified when successful codes are
modified by others to fit new purposes. The
result is the bane of many a graduate student
or postdoc’s life: the ‘monster code’. Sometimes
decades old, these codes are notoriously messy
and become progressively more nightmarish to
handle, say computer scientists.

“You do have some successes, but you also
end up with a huge stinking heap of software
that doesn’t work very well,” says Darling.

The mangled coding of these monsters can
sometimes make it difficult to check for errors.
One example is a piece of code written to ana-
lyse the products of high-energy collisions at
the Large Hadron Collider particle accelerator
at CERN, Europe’s particle-physics laboratory
near Geneva, Switzerland. The code had been
developed over more than a decade by 600
people, “some of whom are excellent program-
mers and others who do not really know how
to code very well”, says David Rousseau, soft-
ware co ordinator for the ATLAS experiment at
CERN. Wilson and his students tried to test the
program, but they could not get very far: the
code would not even run on their machines.

Rousseau says that the ATLAS group can test
the software only on the Linux operating sys-
tem at the moment, but is striving to make the
code compatible with Mac computers. This is
important, he says, “because different platforms
expose different types of errors that may other-

wise be overlooked”.
Some software devel-

opers have found ways
to combat the growth
of monster code. One
example is the Visuali-
zation Toolkit, an open-
source, freely avail
able software system
for three-dimensional

S
o

u
r

c
e:

 G
. W

il
S

o
n

7 7 6 | N A t U r e | V o L 4 6 7 | 1 4 o c t o b e r 2 0 1 0
© 20 Macmillan Publishers Limited. All rights reserved10

computer graphics. People can
modify the software as they wish,
and it is rerun each night on every
computing platform that supports
it, with the results published on the
web. The process ensures that the
software will work the same way
on different systems.

That kind of openness has yet
to infiltrate the scientific research
world, where many leading science
journals, including Nature, Science
and Proceedings of the National
Academy of Sciences, do not insist
that authors make their code avail-
able. Rather, they require that
authors provide enough informa-
tion for results to be reproduced.

the Search for SolutIonS
In November 2009, a group of sci-
entists, lawyers, journal editors, and
funding representatives gathered for
the Yale Law School Data and Code
Sharing Roundtable in New Haven,
Connecticut, where they recom-
mended that scientists go further
by providing links to the source-
code and the data used to generate
results when publishing. Although
a step in the right direction, such
requirements don’t always solve
the problem. Since 1996, The Journal of Money,
Credit and Banking has required researchers to
upload their codes and data to an archive. But a
2006 study revealed that of 150 papers submit-
ted to the journal over the preceding decade
that fell under this requirement, results could
be independently replicated with the materials
provided for fewer than 15 (ref. 3).

Proponents of openness argue that research-
ers seeking to replicate published results need
access to the original software, but others say
that more transparency may not help much.
Martin Rees, president of the Royal Society
in London, says it would be too much to ask
reviewers to check code line by line. And in his
own field of astro physics, results can really be
trusted only in cases in which a number of dif-
ferent groups have written independent codes
to perform the same task and found similar
results. Still, he acknowledges that “how to
trust unique codes remains an issue”.

There are signs that scientific leaders are now
taking notice of these concerns. In 2009, the UK
Engineering and Physical Sciences Research
Council put out a call for
help for scientists trying
to create usable software,
which led to the forma-
tion of the Software Sus-
tainability Institute (SSI)

at the University of Edinburgh. The SSI unites
trained software developers with scientists
to help them add new lines to existing codes,
allowing them to tackle extra tasks without the
programs turning into monsters. They also try
to share their products across disciplines, says
Neil Chue Hong, the SSI’s director. For instance,
they recently helped build a code to query
clinical records and help monitor the spread
of disease. They are now sharing the structure
of that code with researchers who are trying to
use police records to identify crime hot spots.
“It stops researchers wasting time reinventing
the wheel for each new application,” says Chue
Hong.

Another solution is to bring trained com-
puter scientists into research groups, either
permanently or as part of temporary alliances.
Software developer Nick Barnes has set up the
Climate Code Foundation, based in Sheffield,
UK, to help climate researchers. He was moti-
vated by problems with NASA’s Surface Tem-
perature Analysis software, which was released
to the public in 2007. Critics complained that
the program, written in the scientific pro-
gramming language Fortran, would not work
on their machines and they could therefore
not trust what it said about global warming. In
consultation with NASA researchers, Barnes
rewrote the code in a newer, more transparent

programming language — Python
— reducing its length and mak-
ing it easier for people who aren't
software experts to understand
how it functions. “Because of the
immense public interest and the
important policy issues at stake,
it was worth taking the time to do
that,” says Barnes. His new code
shows the same general warming
trend as the original program.

In the long term, though, Barnes
says that there needs to be a change
in the way that science students are
trained. He cites Wilson’s online
Software Carpentry course as a
good model for how this can be
done, to equip students with cod-
ing skills. Wilson developed the
week-long course to introduce sci-
ence graduate students to tools that
have been software-industry stand-
ards for 30 years — such as ‘version
control’, which allows multiple pro-
grammers to make changes to the
same code, while keeping track of
all changes.

Science administrators also need
to value programming skills more
highly, says David Gavaghan, a
computational biologist at the Uni-
versity of Oxford, UK. “There needs

to be a real shift in mindset away from worry-
ing about how to get published in Nature and
towards thinking about how to reward work
that will be useful to the wider community.”

Gavaghan now uses the software industry’s
‘master–apprentice’ approach to train gradu-
ate students in his lab. New software projects
are split up into bite-sized chunks, with each
segment assigned to a pair of programmers —
one experienced and one novice — who work
together on it. “It forces students to become
consistent code-builders,” says Gavaghan.

Bringing industrial software-development
practices into the lab cannot come too soon,
says Wilson. The CRU e-mail affair was a
warning to scientists to get their houses in
order, he says. “To all scientists out there, ask
yourselves what you would do if, tomorrow,
some Republican senator trains the spotlight
on you and decides to turn you into a politi-
cal football. Could your code stand up to
attack?” ■ See World VieW, p.753

Zeeya Merali is a freelance writer in London.

1. Hannay, J. e. et al. Proc. 2nd Int. Workshop on
Software Engineering for Computational Science and
Engineering (2009).

2. Kelly, D. IEEE Software 24, 119–120 (2007).
3. Mccullough, B. D., McGeary, K. A. & Harrison, T. D,

J. Money Credit Banking 38, 1093–1107 (2006).

 nature.coM
To discuss
programming in
research, visit:
go.nature.com/ed3hsl

1 4 o c t o b e r 2 0 1 0 | V o L 4 6 7 | N A t U r e | 7 7 7

FEATURE NEWS

© 20 Macmillan Publishers Limited. All rights reserved10

