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ABSTRACT

This work addresses the problem of lung sound classification, in particular, the problem of distinguishing be-
tween wheeze and normal sounds. Wheezing sound detection is an important step to associate lung sounds
with an abnormal state of the respiratory system, usually associated with tuberculosis or another chronic ob-
structive pulmonary diseases (COPD). The paper presents an approach for automatic lung sound classification,
which uses different state-of-the-art sound features in combination with a C-weighted support vector machine
(SVM) classifier that works better for unbalanced data. Feature extraction methods used here are commonly
applied in speech recognition and related problems thanks to the fact that they capture the most informative
spectral content from the original signals. The evaluated methods were: Fourier transform (FT), wavelet de-
composition using Wavelet Packet Transform bank of filters (WPT) and Mel Frequency Cepstral Coefficients
(MFCC). For comparison, we evaluated and contrasted the proposed approach against previous works using
different combination of features and/or classifiers. The different methods were evaluated on a set of lung
sounds including normal and wheezing sounds. A leave-two-out per-case cross-validation approach was used,
which, in each fold, chooses as validation set a couple of cases, one including normal sounds and the other
including wheezing sounds. Experimental results were reported in terms of traditional classification perfor-
mance measures: sensitivity, specificity and balanced accuracy. Our best results using the suggested approach,
C-weighted SVM and MFCC, achieve a 82.1% of balanced accuracy obtaining the best result for this problem
until now. These results suggest that supervised classifiers based on kernel methods are able to learn better
models for this challenging classification problem even using the same feature extraction methods.
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1. MOTIVATION AND PURPOSE

Around 4 million of deaths are caused by lung diseases every year. These diseases had affected over 300 million
people around the world between 2010 and 2011.1 Studies have related the growing spread of these diseases
with respiratory airways exposition to vicious environments and social factors as obesity and continued smok-
ing. A lot of people suffer some kind of lung disease, their symptoms are underestimated and often lack any
medical treatment.

Obstructive lung diseases are mainly characterized by the presence of wheezes, an adventitious sound that
is related to various types of narrowing of lung airways. In the clinical practice, wheezes are manually de-
tected by auscultation. However, it means that a level of subjectivity is involved and totally depends on the
physician experience, which affects the diagnosis and the reproducibility in clinical routine due to the lack of
computerized methods for lung sound analysis.

In the 90’s a European Commission funded the CORSA project (Computerized Respiratory Sound Analysis)
to standardize all measures, terms and computational techniques related to lung sound characterization.2 Since
CORSA project started, there have been some previous works which had used CORSA standard, e.g. Mayorga
et al.,3 Amjad Hashemi et al.4 and Bahoura.5
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Taking into account that the previous works did not explore the potential capabilities of better machine
learning classifiers, we explore in this paper the integration of a more reliable method for automatic classi-
fication, a C-weighted Support Vector Machine, evlauating it with different state-of-the-art feature extraction
methods. For validation we compared our approach against the best results reported in literature for wheeze
detection in respiratory sounds.

2. METHOD: AUTOMATIC DETECTION OF WHEEZES IN LUNG SOUNDS

The proposed method for automatic detection of wheeze lung sounds is summarized in Figure 1. A set of man-
ually labeled lung sounds is used for training. Three different features are extracted from each sample sound:
short time Fourier transform (FT), wavelet packet transform (WPT), and mel-frequency cepstral coefficients
(MFCC), which are described in Section 2.1. Then, a C-weighted SVM model is trained to classify between
wheeze or normal sounds using different type of features as input. During prediction, a new sound sample is
processed to extract the features and the learned C-weighted SVM classifier is applied to predict its sound class
either normal or wheeze.

Figure 1. Overview of the proposed method for automatic detection of wheezes in lung sounds by using different acoustic
state-of-the-art feature extraction methods and a C-weighted SVM classifier.

2.1 Acoustic feature extraction methods
Given a 1D-signal represented by a d-dimensional vector, a feature extraction method aims to find a new more
efficient feature vector representation of m elements where m < d. In this work we used three of the state-of-
the-art acoustic feature extraction methods which are described below.

Fourier Transform (FT): A variant of the traditional Fourier transform is the Short Time Fourier Transform
(STFT), which provides temporal and frequency information by calculating the FT over a set of segments of the
original signal, and it is defined for discrete time signals as follows:

STFTi[n] = F[τ, ω] =
f

∑
n=1

x[n]w[n− iτ]e−jωn with ω =
2π

N
(1)

For the i-th STFT segment analyzed, the signal x[n] is multiplied element by element by a window function
w[n, τ] which is nonzero only in a portion of the signal and help to diminish the spectral leakage effect, this
window function is shifted i times for some shifting constant τ. Then the FT is applied over the windowed
portion of signal of length f . Being k the number of segments to be analyzed, the full STFT transform will be
built concatenating every single iteration of STFT into a f × k matrix, where the i-th column corresponds to the
Fourier content of i-th segment of signal with i = 1, 2, ..., k.

In our case, we set f = 1024 (0.1ms with Fs = 10240Hz) and τ = f /2 for 50% overlap between segments.
The Hamming function was used as window function for this feature extraction process as well as for the other



ones. Particularly, for the FT feature set we subdivided spectra for each segment into 26 partitions taking power
spectrum density (PSD) of each one, given by:

PSD[i, j] =
1
N
|STFTi,j|for the j-th partition being j = 1, 2, ..., 26 (2)

Wavelet Package Transform (WPT): Another widely used option for signal analysis is the wavelet trans-
form, where a 1D-signal can be represented as the sum of short-time signals generated by a set of wavelet basis.
Wavelet basis are time-amplitude scaled versions of a mother wavelet where all of them satisfy orthogonality
among them and can be used as basis to represent variety of signals in time domain. The wavelet transform is
defined as follows:

WT(x(t)) =
∫ ∞

−∞
x(t)ψa,b(t)dt with ψa,b(t) =

1√
a

ψ(
t− b

a
) (3)

Where a, b are the scale and position coefficient respectively. Particularly, we used the discrete wavelet
transform, where the a and b parameters vary in a dyadic sequence through a set of j decomposition stages of
filtering and subsampling.6

In this work we set j = 7 as well as the symlet (sym8) wavelet function as mother wavelet for each segment.
Then, a set of 19 features was taken in the same way as it was performed for baseline methods.4, 5 This feature
set was built taking the mean of absolute values (µj), average power of values (pj), standar deviation (σj) for
each subband, and ratio of median of absolute values for adjacent subbands (µj/µj+1) using j = 3, 4, 5, 6, 7

Mel-Frequency Cepstral Coefficients (MFCC): The cepstral analysis was mainly motivated by speech recog-
nition problems wehre it is important to separate the complete speech signal y[n] into two signals, glottal speech
s[n] and vocal tract response h[n], being the total speech signal the convolution of these ones. Hence, the com-
plete speech signal is modeled in the discrete time domain as follows:

y[n] = s[n] ∗ h[n] (4)

Taking into account this formulation, the log-transformation of the spectra of the convoluted signal y[n] can
be expressed as:

log(|Y(ω)|) = log(|S(ω)|) + log(|H(ω)|) (5)

where, |Y(ω)|, |S(ω)|, and |H(ω)| are the absolute values of the corresponding FT of signals y[n], s[n] and
h[n]. The cepstrum coefficients are obtained by performing the inverse FT of log(|Y(ω)|) to the time domain.
Particularly, Mel-Frequency Cepstral Coefficients are obtained in a similar way, but involving a filtering stage
through a sequence of triangular filters in the frequency domain separated by the mel-scale that make the
coefficients more consistent to the human hearing.

In this case, we will treat wheezes as superimposed signals over the normal breath sounds, 24 MFCC were
used onto a frequency band from 0 to 5120 Hz for each segment.

2.2 C-weighted Support Vector Machine Classifier (C-weighted SVM)
Support Vector Machine (SVM): SVM are the most popular and successful margin-based machine learning
method used for regression and classification tasks. The key part of this approach is the ”kernel trick”, which
implicitely transform the original data representation, using a kernel function, into a high dimensional space,
a.k.a. feature space, where data is expected to be linearly separable by hyperplanes for the classification task.
Independently of the type of kernel used, in training stage, a SVM solves an optimization problem to find the
optimal hyperplane to linearly separate the classes, which is defined by:



L̃(α) =
n

∑
i=1

αi −
1
2 ∑

i,j
αiαjyiyjk(xi, xj) , s.t. (for any i = 1, . . . , n): 0 ≤ αi ≤ C, and

n

∑
i=1

αiyi = 0 (6)

where k(xi, xj) is the kernel function and C is the complexity parameter.

C-weighted SVM: Imbalanced data, the typical scenario in biomedical applications, may affect the perfor-
mance of a typical SVM. The complexity parameter C is related with the tolerance of model to misclassification,
the larger the complexity of the model the fewer instances misclassified and viceversa. However, the concern
for a problem with class imbalance has to do with how to adjust C parameter to let the model be prone to mis-
classify some instances of majority class while keeping almost all instances of minority class well labeled. As
a solution to this problem, the C-weighted SVM uses a weighted C for each class in the data7 where each C is
weighted inversely proportional to the frequency of data for each class. Thus, classes with lots of instances will
get a less complex separation margin, while the class with fewer data will be adjusted in a better way with a
more complex margin.

3. EXPERIMENTAL EVALUATION

3.1 Lung Sounds Dataset
The database used is the R.A.L.E. Repository provided by the University of Manitoba, in Winnipeg Canada.8

This dataset consists of more than 50 lung recordings which exhibits a variety of adventitious sounds as
wheezes, crackles, rhonchi and other ones. All of these sounds were recorded at 10240 Hz, and then, a post-
processing stage was applied: first, a portion of the signal is extracted corresponding to one full breathing cycle;
and second, signal amplitude is normalized and filtered using a 4000 Hz high-pass filter for noise suppression.
From the original 50 recordings, 26 were chosen for the final dataset, where 17 correspond to wheezes and 9
to normal breath sounds according to the the diagnosis provided by an expert. After that, all recording were
partitioned in segments of 0.1ms with 50% overlap where each one was labeled as wheeze or normal segment
by the expert. From the 26 recordings dataset, 1188 were extracted, 898 labeled as normal or non-wheeze seg-
ments and 290 wheeze segments. The performance of the classifier was evaluated by classifying these segments
correctly.

3.2 Experimental Setup
In order to evaluate the classification performance of proposed approach, it was compared against baseline
methods described in previous works3–5 using the same experimental setup and evaluation criteria to obtain
comparable results as it is detailed below.

Leave-Two-Out Cross-Validation: The traditional Leave-One-Out Cross Validation (LOOCV) is a well know
strategy to evaluate the prediction ability of a model when the evaluation data set is small. LOOCV is equivalent
to a n-fold Cross-Validation where n is equal to the number of instances present in dataset. As it was described
in the previous section, the data set is composed of several segmests extracted from 26 different cases. To make
a stricter evaluation, segments from the same case are not divided among the training and validation folds, so
the LOOCV is done at the case level. This means that the evaluation fold is made of several segments extracted
from the same case, which could be normal or wheeze. I order to make this fold more balanced, we perform a
Leave-Two-Out Cross-Validation (LTOCV), where each fold takes one sample for each class (wheeze and nor-
mal) in the validation data set, whilst the remaining samples are used to train the model. Hence, multiple
runs are done by randomly choosing the validation samples. Since we have 17 wheeze and 9 normal cases, a
bootstrap sample of 17 elements was made from the normal cases. Thus, we can carry out LTOCV with 17 folds.

Evaluation criteria: The traditional measures reported in different publications related with lung sound
classification are sensitivity and specificity; being sensitivity the model capabilty to predict a present condition
correctly and specificity its counterpart, i.e. the ability to reject a condition correctly whenever it is no present.
The equations below show how these measures are calculated, where TP (True Positives), TN (True Negatives),
FN (False Negatives) and FP (False Positives) are the outcome of a confusion matrix.



Sensitivity =
TP

TP + FN
Speci f icity =

TN
TN + FP

BAC =
Sensitivity + Speci f icity

2
(7)

Being the presence of an illness condition, wheeze in this case, the positive class, it is usual to choose models
with high sensitivity because they are highly accurrate to detect the positive condition. Meaning that it is more
costly to reject a patient with presence of wheezes evaluated as normal in comparison to a normal condition
evaluated as ill. However, high sensitivity models can involve a very poor specificity performance which is
also undesirable. Thus, balanced accurracy (BAC) has a reliant value as evaluation measure for classification
models in a medical context since it averages the sensitivity and specificity outcome. Hence, BAC was choosen
as evaluation criteria for all methods, even so, sensitivity and specificity measures are also reported. The results
in Table 1 are the average over all 17 folds in LTOCV. A 95% confidence interval based on a t-test with 17 degrees
of freedom for all measures is also provided.

Baseline and proposed methods: Our proposed approach was evaluated by combining each state-of-
the-art feature extraction method described in Subsection 2.1 with the SVM classifier described in Subsection
2.2 resulting in three different strategies: Fourier Transform with C-weighted SVM (FT+SVM), Wavelet Packet
Transform with C-weighted SVM (WPT+SVM) and Mel-Frequency Cepstral Coefficients with C-weighted SVM
(MFCC+SVM). Linear, polynomial and Gaussian kernels were evaluated but Gaussian yielded the best results.
After perform exploration of parameters into a 10 based log-scale grid search going from 1x10−4 to 1x104, the
best combination for the Gaussian kernel per each feature was: C = 1, γ = 0.1 for MFCC, C = 1, γ = 1 for FT
and C = 0.1, γ = 0.1 for WPT. For comparison, the best methods from the state of the art for lung sound classi-
fication were used as baselines.3–5 In,5 24 MFCC were combined by a Gaussian mixture model for 8 Gaussians,
In,3 the number of Gaussians was varied from 1 to 20 using 7 MFCC where 9, 10, and 11 Gaussians reported the
best results (MFCC+GMM). In4, 5 a Wavelet Packet Transform with 7-level decomposition and taking different
sets of Wavelet Transform features (195 and 5,10,154) was combined with a Multi-layer Perceptron with 30 hid-
den units were used as classifier (WPT+MLP). The parameters for each baseline method were set according to
the ones reported in those papers.

3.2.1 Results

Table 1 presents the performance results of the baseline methods, WPT+MLP and MFCC+GMM, and the pro-
posed approach C-weighted SVM combined with each type of feature (FT, WPT, MFCC). The best performance
is achieved by MFCC+SVM with Gaussian kernel obtaining 82.1% of BAC. This result outperforms both best
baseline methods MFCC+GMM and WPT+MLP. Although WPT+MLP yield better specificity than the other
evaluated methods, it carries a low sensitivity which is a more valuable measure for the target task in this
work. Interestingly, the second best results is produced by our proposed strategy using the WPT instead of
MFCC. Comparing the same features, MFCC and WPT, with our suggested C-weighted SVM classifier against
the GMM and MLP used in the literature, our approach outperforms these previous results. This suggests that
using the same features is possible to obtain better performance by applying a better machine learning classifier.
In both cases MFCC features get better results than WPT, whereas FT features is the less appropriate to capture
the relevant information in wheeze detection.

Table 1. Classification performance for automatic detection of wheeze lung sounds in terms of balanced accuracy (BAC), sensitivity and specificity for each
of one of the strategies.

BAC Sensitivity Specificity

MFCC+SVM (Ours) 0.821 ±0.07 0.815 ±0.10 0.826 ±0.07

WPT+SVM (Ours) 0.818 ±0.05 0.944 ±0.06 0.692 ±0.09

FT+SVM (Ours) 0.791 ±0.07 0.760 ±0.11 0.823 ±0.07

MFCC+GMM3, 5 0.807 ±0.06 0.803 ±0.10 0.811 ±0.06

WPT+MLP4, 5 0.752 ±0.08 0.650 ±0.16 0.853 ±0.05

It is worth to say that C-weighted SVM offers another advantage over other methods by being a powerful
and highly efficient method. Since the margin of decision for classifictaion is based on support vectors which



are built on a subset of instances of training set, the training process for a SVM is faster than a neural networks.
This yields a faster training stage for SVM taking less than a minute to train and evaluate all 17 LTOCV folds. All
three feature extraction methods were performed using MATLAB R2010b. On the other hand, the proposed C-
Weighted SVM as well as baseline methods were implemented in Python 2.7.3 using different Machine Learning
modules like Pybrain9 for MultiLayer Perceptron and scikit-learn7 for GMM and SVM running on a dual-core
laptop with 2.4GHz CPU.

4. NOVEL CONTRIBUTIONS
The main contribution of this work is a more accurate automatic wheeze detection method based on a C-
weighted SVM classifier applied for the first time in this domain. Our experimental evaluation shows that
using better machine learning algorithm for pattern recognition it is possible to achieve better performance with
the same feature extraction methods. Whereas SVM classifiers have been used to detect cracks and squawks
lung sounds, these were not used for wheeze detection, thus accentuating the contribution of this paper in the
CORSA framework.

5. CONCLUSIONS
We applied for the very first time a C-weighted SVM algorithm as classifier for automatic detection of wheeze
sounds over a variety of the best feature extraction methods in the CORSA framework. Our experimental results
show that using a better classifier for this problem yields in a performance improvement independently of the
feature extraction method selected. The best results were achieved by combining MFCC and C-weighted SVM
with Gaussian kernel obtaining 82.1% of BAC. Additionally, we proved the high efficiency of SVM algorithms
to train the whole setup of 17 LTOCV folds, which include 1188 segments, in less than a minute. In similar way,
prediction took less than a second to evaluate each one of the folds. Future work includes feature combination
strategies to train kernel-based models for automatic classification of more types of lung sounds like ronchi,
fine and coarse crackles.
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