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Abstract

This thesis presents a method for semantic image segmentation based on a structured output
prediction strategy.

The method is applied to two di�erent problems, road object detection and human gait anal-
ysis. In the �rst problem, the strategy can be summarized as follows: At �rst stage the image is
oversegmeted to achieve a manageable number of entities to be classi�ed, then these segments are
characterized using the bag of feature representation. At a second stage, the image is modeled as a
graph where nodes correspond to segments and arcs to neighborhood relationships, a Markov Ran-
dom Field (MRF) model is trained using a set of labeled images, �nally the segments are labeled
by minimizing the MRF energy �nding the most probable labels for each segment. The proposed
strategy was tested on CamVid Dataset, and showed a good performance.

Regard to the human gait analysis, that is an important research area in several applications
such as video surveillance, image retrieval systems, human interaction, and medical diagnostics, the
problem emerged in this type of analysis is the segmentation of the human body in di�erent parts
of the body including head, limbs, torso and feet. This problem is challenging due to the occlusion
of body parts (on sagittal gait), variability on the appearance on the images such as clothes with
similar colors and �nally the image perspective. In recent decades, the research works have been
carried out in the segmentation of human body in di�erent parts of videos and pictures directly
but the perspective and appearance problems are still remain.

The strategy in this case can be summarized as follows: At �rst stage the division of the
scene in small segments called superpixels using a oversegmentation technique is performed, and,
at second, these superpixels are labelized de�ning a multi-class Support Vector Machine (SVM)
and then �nding a labeling that maximizes the probability given a set of classes. Superpixels are
characterized using depth invariant features. The proposed strategy was tested on the Depth Gait
Dataset, and showed a competitive performance.

Keywords: Structured output prediction, image segmentation, markov random �elds, sup-
port vector machines, human gait analysis, kinect.
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Resumen

Ésta tésis presenta un método de segmentación semantica de imágenes basado en una estrategia de
predccion estructurada.

El método es aplicado a dos problemas diferntes, detección de bjetos en carretera y análisis
de la marcha humana. En el primer problema, la estrategia puede ser resumidad de la siguiente
forma: En la primera etapa, la imagen es sobresegmentada para obtener un número manejable de
entidades a ser clasi�cadas, luego éstos segmentos son caracterizados usando la representación de
bolsa de características (BoW). En la segunda estapa, la imagen es modelada como un grado, donde
los nodos corresponde a superpixeles y los arcos a las relaciones entre éstos, un model de Campo
Aleatorio de Markov (CAM) es entrenado usando un conjunto de imágenes etiquetadas. Finalmente
los segmentos son clasi�cados a través de la minimización de la energía de CAM, encontrando las
etiquetas más probables para cada segmento. La estrategia propuesta fue probada de el dataset
CamVid, mostrando un buen rendimiento.

Con respecto al análisis de movimiento humano, que es un área de investigación importante en
varias aplicaciones tales como video-vigilancia, sistemas de recuperación de imágenes, aplicaciones
basadas en interacción humana y el diagnóstico médico, el problema que surge en este tipo de
análisis es la segmentación del cuerpo humano en diferentes partes que lo componen, incluyendo
la cabeza, extremidades, torso y pies. Este problema es un reto debido a la oclusión de partes del
cuerpo (en marcha sagital), la variabilidad en la apariencia en las imágenes, tales como ropa con
colores similares y, �nalmente, la perspectiva de la imagen. En las últimas décadas, los trabajos de
investigación se han llevado a cabo en la segmentación del cuerpo humano en diferentes partes de
los vídeos y fotos directamente, pero los problemas perspectiva y apariencia siguen permaneciendo.

La estrategia en éste caso puede ser resumida como: En la primer etapa se hace una di-
visión de una escena visual en pequeños segmentos llamados superpixeles, usando técnicas de
sobre-segmentación. En la segunda se lleva a cabo el etiquetado éstos superpixeles a través del
entrenamiento de una máquina de vectores de soporte multi-clase, para entonces encontrar una
con�guración que maximice la probabilidad de éstas clases. Los superpixeles son descritos usando
características invariantes a la profundidad. La estrategia propuesta fue probada en el Depth Gait
Dateset, y probó tener un rendimiento competitivo.

Palabras clave: Predicción Structurada, segmentación de imágenes, campos aleatorio de
markov, máquinas de vectores de soporte, análisis de marcha humana, kinect.
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Chapter 1

Introduction

There are a variety of techniques for image understanding and multimedia information retrieval,
that combine data properties, such as low-level features, metadata and labels. These techniques
are used to �nd patterns that de�ne, classify, or group relevant results according to user needs in
an appropriate time period, or to deduce the di�erent objects and scenes associated to semantic
concepts. The de�nition of these patterns derives on the correct ontology and heuristic approach,
that necessarily includes measures of similarity between di�erent data (images), taking into account
physical or semantic similarity, or both.

Due to the importance of semantic concepts, the image understanding techniques have developed
annotation methods based on keywords or metadata associated with the image, ontologies that
provide the form or hierarchy between the concepts of the image, segmentation and vocabulary
building such as super-pixel, bag of features, salience maps and visual attention models, and �nally
classi�cation using low-level features. In this context, image segmentation provides an interesting
way to address the image understanding problem, because allows for the absence or presence of
concepts associated with objects, at same time that turn up scenes that de�ne the image type and
emerging concepts according to the visual words spatial interaction.

The di�erent approaches to image semantic segmentation can be group into several areas as
Signal Analysis (SA), Machine Learning (ML) Probabilistic Analysis (PA) and Ontological and
Human Perception Study (OHPS): on these areas, the common research strategy to address the
problem is based on three steps: �rst, to calculate a visual vocabulary that involves bigger entities
than pixels, second, to assign labels to these entities according to a trained classi�cation model,
and �nally, group them into semantic objects using a SA/ML/PA/OHPS strategy.

Following this order, the di�erent approaches have been divided in the three mentioned stages
according to their contribution. At �rst,[53] ,[39] and [54] built the visual vocabulary through small
blob based super-pixels (A group of pixels that are obtained using over segmentation methods ),
represented by descriptors such as color, texture [53], 2D frequency planes [12], SIFT, SURFT,
among others. Those features could receive some kind of pre-processing for reducing the dimen-
sionality of the variables to classify, such as PCA [12],. Once the super-pixels are characterized,
they must be group in order to generate a more speci�c, reduced and non-redundant vocabulary.[39]
and [44] adapted the bag-of-feature model based on hierarchical K-means, [1] built a randomized
decision forest that uses simple pixel comparisons, performing an implicit hierarchical clustering
into semantic texton.

3



CHAPTER 1. INTRODUCTION 4

At second stage is necessary to build a classi�er for the labeling task, according to the previously
visual vocabulary. Some approximations are based on a probabilistic framework, for example,[39]
proposed a yielding second- order Markov Random Field (MRF) in conjunction with a MAP solu-
tion, [54] a MRF incorporating local interaction in unsupervised parameter learning, [?]turn raised a
learning method that estimates the parameters by maximizing a lower bound of the data likelihood
(CRF), same way than [43][and [53] used a MRF and SVM combination, [44] raised a multivariate
iterative region growing using semantics (MIRGS) in a MRF context model with edge penalty, [56]
assumed a di�erent perspective of the problem through the template de�nition from similar image,
that means with same objects or scenes, in di�erent viewing angles and �nally [59], at same pixel
level, proposed a �nite mixture model to approximate the class distribution of the pixels through
an Expectation-Maximization (EM) algorithm.

Other solution is addressed to Multiclass SVM strategies such as the [53] model in which the
variables are mixing with a MRF method, [45] where the features are uni�ed through a weighted
linear combination provided by relevance feedback, [12] incorporating Neuronal Networks in the
optimization function and[19]in which salient objects are detected and de�ned using EM.

ML approaches are reported too, such as Bayesian perspective[34] in which model the e�ective-
ness is due to the capacity to integrate knowledge to the network probability, and reduce a joint
probability distribution to conditional independence relationships, [16]. Linear Discriminative Anal-
ysis (LDA), [32]Kernel version model based on Gaussian mixture strategy (KGMM). Graph based
methods such as [32] that extend the bag of feature model, [17] in a connected coherence tree algo-
rithm based on neighbor coherent segmentation criterion, and [4] with N-cut process. Generative
Models [60] combines coarse shape information and robust parameter estimation, �nally Relevance
Feedback approximation [18] in which the system recomputed the weights of every relationship
between the de�ned semantic concepts.

Some alternatives to this ML approaches including Ontological treatment,[5] that propose
matching a region's low level descriptors against a knowledge base or fussy label set, de�ning merg-
ing process and fuzzy operations and [10] that calculates the regions similarity using the WordNet
ontology enhanced with appearance information, that is orthogonal to visual similarity and �nally
Morphological Tools, [58] in which the regions are grouped according to morphological erosion and
dilation.

Finally the labeled regions are group according to its similar labels, forming in this way, the
analysis base semantic objects.

1.1 Problem Identi�cation

The problem addressed in this proposal arises the solution of Image Understanding through Se-
mantic Segmentation, where the goal is to assign one semantic category to every pixel's image and
then group them into segments that can be related to scene objects. An alternative is to perform
�rst a segmentation and them assign a label to each segment. An intermediate approach consist in
performing an oversegmentation that generates a set of small homogeneous regions (called super-
pixels) that are later labeled and grouped together in segments. The latter approach is the one
followed in this work.

The main problem here is how to assign labels to superpixels. A �rst approximation to solve
it, is to model it as a classi�cation problem, in which each superpixel is modeled as a variable
that can be classi�ed according to features such as color, texture, etc. This approach, although
valid, does not take into account valuable information such as the way to relate the de�ned regions,
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which could lead to a new semantic concept de�nition or the establishment of tagging patterns,
therefore, the question at this point would be, how to model the relationships among superpixels?
We propose to model the problem as an structured output learning problem. The goal is then to
build a prediction model that is able to assign all the labels at once and that models the image as
a graph composed of superpixels (nodes) and their relationships (arcs).

According to this, the main objective is to answer questions that de�ne the relevance, e�ective-
ness and e�ciency of structured prediction methods based on those reported in the literature, the
same way to identify which structured prediction methods are more e�ective for the speci�c image
segmentation problem.

1.2 Objectives

� To develop and evaluate a prototype of a semantic image segmentation system using a struc-
tured output prediction method based on a superpixel representation.

� To develop a method for superpixels extraction and characterization.

� To develop a method for image representation based on superpixels and a bag of features
strategy.

� To propose/adapt and develop a structured output prediction strategy to assign semantic
labels to superpixels.

� To evaluate the performance of the semantic segmentation system using a manually
labeled image data set.

1.3 Structure of Thesis

The remainder of this thesis is organized as follows. Chapter 2 reviews and discusses the state of
the art in image segmentation and a brief summary of the approaches to the problem of object road
detection and gait segmentation analysis.

Chapter 3 describes the proposed the overall structured output prediction strategy for segmen-
tation, describing the all phases, the oversegmentation process, the learning model construction and
the inference problem.

Chapter 4 presents the experimental results and analysis on two datasets, CamVid and Gait
Database.

Finally, Chapter 5 presents our conclusions and outlines some avenues for future research.



Chapter 2

Literature Review

The daily process of image understanding and interpretation that performs the human brain, de�nes
the way we interact with the environment, allowing us to build knowledge according to the ability
of the brain to detect objects, recognize their interactions and predict the state of them. The image
processing research area, through the analysis of human visual strategy, establishes as a method of
understanding the environment (measure through images) the recognition and tracking of objects in
time.Research in this area of knowledge, can be used in practical applications such as medical tests
(location of tumors and other diseases, measured tissue volume, computer-guided surgery, diagnosis,
treatment planning, study of the anatomical structure) , locating objects in satellite images (remote
sensing), �ngerprint sensors, face recognition, iris recognition, tra�c control systems, computer
vision, among others. This work will focus on the application of computer vision, more speci�cally
on the problem of image segmentation, strategy established as one of the most important stages,
when the image understanding is performed Figure 2.0.1. In this chapter we summarize the state
of the literature of recent techniques used on images segmentation. Later we will describe the
particular problem of human gait analysis, and how the image segmentation solve the problem.

Figure 2.0.1: Image understanding examples

6
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Figure 2.1.1: Image segmentation levels

2.1 Image Segmentation

Image segmentation can be seen as a strategy that subdivides an image into its constituent parts or
objects, in order to �nd regions of interest. The goal of segmentation is to simplify and/or change
the representation of an image in a more signi�cant and easier to analyze. Segmentation is used
both to locate objects and to �nd the limits of these within an image. More precisely, the image
segmentation is the process of assigning a label to each pixel of the image, so the pixels that share
the same label will also have certain visual similarly. The level at which the subdivision of the image
is done depends on the particular application, therefore the segmentation end when the relevant
objects to the application have been found, as exempli�ed in Figure 2.1.1 where the the purpose is
to �nd classes within a gait image; at �rst segmentation level the Walker object is found, at second
level the Upper y Lower Body labels are de�ned, and at N-level the N-Parts of the body are found,
in this case Head, Right and Left Arm, Torso, and Right and Left Leg.

Broadly speaking, the regions of interest can be found through discontinuities in the intensity
of gray levels in the image, de�ning edges and/or lines that delimit interesting objects, or by
grouping based on similarities in features between pixels, as we can seen on Figure 2.1.2, where
the similarities separate the background of objects of interest, and discontinuities establish the
boundaries of objects in the image, such as Fish, Coral and Sea. They could �nally be de�ned by
hybrid methods between these two approaches. Techniques to �nd these regions of interest and
make appropriate assignment of labels, are as diverse as the datasets that have been considered in
the literature.

There is not a standard technique of image segmentation that works e�ectively on all kinds of
images, this is a result of the ambiguity of the task itself. It is worth to say that segmentation is
an ill-de�ned problem and often unconstrained.
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(a) Original Image (b) Sobel �lter de�ning objetcs (c) Thresholding �lter de�ning
background and objects

Figure 2.1.2: Image analysis approaches

Choosing the appropriate segmentation algorithm for a particular applications is critical, because
depending on the context, the de�nition of semantic objects should be carried out quickly, or in
detail, or should mediate between these two conditions. One possible solution is to try all possible
algorithms probe to solve the segmentation problem, and choosing the algorithm for the best results,
but, due to the large number of algorithms proposed in the literature, which often pose a great
implementation complexity, make the exhaustive task is not feasible. In practice, only a limited
number algorithms can be tested, these must be based on known characteristics and performance
measurements, and implementations independent on applications. So then, the investigation in
this area should be focus on optimizing, modifying and generalizing techniques have been shown
e�ectiveness in a wide range of applications, as well as generate new algorithms to be compared
against the state of the art results. The segmentation techniques can be classi�ed in di�erent ways,
for example, according to their application areas, theirs implementations issues, the way them can be
used, or the logical form of the algorithms themselves. Considering the last classi�cation standard,
and focusing on whether the techniques take uncertainty into considerations, the technique can be
grouped in Probabilistic and Deterministic Approaches[37].

2.1.1 Probabilistic Approaches

In this approach, a probabilistic model is built, as deduced a mathematical representation of a set of
assumptions for the dual purpose of studying the results of a random experiment and predict their
future behavior, when is performed under the same initial conditions. Thus, in the probabilistic
model labels assigned to each pixel represent random variables that we want to predict, while each
of the pixels and their features, represent the initial conditions. The probabilistic approaches can
be subdivided into two groups Graphical Models based Segmentation and Bayesian Segmentation
according to how the probabilistic model is built [37].

1. Graphical Models based Segmentation

The graphical models formulate the image segmentation with a solution based on graphical model
theory, in which the task is to describe how the random variables and the observation (labels and
pixels, respectively) can interact. This is achieved using structural assumptions as to the form
of the joint probability distribution of all the variables, typically corresponding to assumptions of
independence of random variables. Each class of graphical model corresponds to a factorization
property of the joint distribution. Once the basic assumptions as to how variables interact with
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each other is formed, all questions of interest are answered by performing inference on the distribu-
tion. This can be a computationally non-trivial step so that coupling GMs with accurate inference
algorithms is central to successful graphical modelling.

According to the types of graphical models the techniques can be divided into undirected graph-
ical models and the directed acyclic graphical models. The undirected graphical models represent
non-casual relationships between the random variables, such as the spatial homogeneity. An exam-
ple of these are the Markov Random Fields (MRF)[13] and Conditional Random Fields (CRF) [24],
they incorporate the spatial relationships among neighboring labels as a Markovian prior. This
prior can encourage the adjacent pixels to be classi�ed into the same group. The limitation of these
two models is the inability to model causality relationships to solve this problem, which would make
its simplest formulation, the directed acyclic graphical models: such as Bayesian Networks (BN)[28]
can model the causal relationships between random variables using directed links and conditional
probabilities.

Markov Random Fields
MRF has been widely used in image segmentation problem[References]. The basic MRF model

includes the formulation of the joint probability distribution of the image observation and labels
in a regular 2D lattice. MRF assumes that the image observations are conditionally independent
given the label on each site, this condition restricts the analysis could be made of the discontinuities
and similarities of the image.

From this basic structure (2D lattice), they have detached models such as Hierarchical MRF
(Hidden MRF, binary tree-structured MRF, Couple MRF, Multi scale MRF as quad-tree structure,
pyramidal structure and complex structures) that propose a model to analyze the overall inference
problem through optimization problem between adjacent levels equivalent to pyramids of segmen-
tations (image decomposition). Thus, there is communication between the di�erent levels of the
pyramid of the multiresolution image, so the segmentation problem is being resolved by levels.

Spatial-temporal MRF is obtained by adding to the regular MRF the time dimension. The
model combines the spatial and temporal aspects of video sequences, considering image di�erences
between consecutive frames as observations. The �at MRF directly models the interactions between
pixels, this is only interesting in cases where no long run interactions are needed, e.g. in images
with small structures. In images with larger and, more importantly, scale varying content, the
hierarchical nature of the markov cube manages to better model the image contents.

2. Bayesian Segmentation

The Bayesian segmentation formulates the problem directly using Bayesian statistics. Strong in-
dependence assumptions must be done among random variables in order to derive the probability
distributions. The algorithms can be divided into discriminative and generative, according to the
property of the statistical formulation. Discriminative algorithms treat image segmentation as a
kind of classi�cation problem that satisfy a selected criteria. Support Vector Machines (SVM)[26],
Neural Networks(NN)[15], Decision Tree [57], Probabilistic boosting [51], Parzen Window [48], Log
Linear [11] and MAP Models [29] are examples of this kind of approaches. Generative algorithms
model the joint distribution of the class labels and the observations. Joint probability can be fac-
tored into the product of the likelihood and prior distribution of the labels. The likelihood of the
data can be modeled using parametric or non-parametric methods. In the non-parametric approxi-
mations use a simple histogram to represent the likelihood, and the parametric one, use Gaussian or
Mixtures of Gaussians (MoG)[46] to this task. The prior distribution of the labels can be modeled
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as Gaussian or multinomial distributions. Having the joint likelihood and the prior distributions a
MAP inference can be done through stochastic simulation.

2.1.2 Deterministic Approaches

In the deterministic approaches the problem is set as mathematical model where the same entries
invariably produce the same outputs, not contemplating the existence of chance or the uncertainty
principle The deterministic approaches can be subdivided into clustering techniques, region growing
and region splitting and merging. The clustering techniques have into account two general ideas,
group the pixels that belong together because they lie on the same object and/or group them belong
together because they are locally coherent. That coherency is measure through small distance in
feature space (whatever features is going to having into account). The questions in here are,
how many clusters is need to �nd, and which the better distance measure to use is. Clustering
algorithms can be classi�ed into herarchical or partitional [21]. The hierarchical [7] involve the
clusters themselves being classi�ed into groups, where the process is repeated at di�erent level to
form a tree. Partitional techniques [36] generates clusters by optimizing a clustering criterion where
the classes are mutually exclusive, thus forming a partition of data.

On the other hand, the region growing methods [49][47]] aims to join pixels of an image with
similar properties to create a region of interest. This task is performed as, �rst, �nding a seed
pixels inside the image, then merge similar pixels around the seed domain and, �nally, the similar
pixels are use as new seed. The process is stopped when no seed found which has same value. The
region splitting [3] and merging methods [25] represent the image as a tree with connected graphs
without cliques. The root of the tree would be the image itself, later the image is divided into a set
of four arbitrary disjoints regions that represents the leaves. If the brothers-leaves are homogeneous
(according to a speci�c measure), they can be merge and are going to represent one node of the
tree. The process is cyclic and ends when no further merging is possible.

2.2 Road Object Detection

The object detection problem on road tra�c is one promising research area for future intelligent
transportation systems. The applications of the object detection ranging from autonomous naviga-
tion system until contribution on road safety. To address the problem, one of the approximations is
to analyze the tra�c image sequences from roadside camera, as for example, the CamVid dataset
[9] describe in section 4.1. Several image processing algorithms have been developed to solve the
problem, these involves the tra�c theoretical modeling, object detection and monitoring, and the
combination of both. Image Segmentation contributes in the object detection task, though the the
recognition of all actors in the scene of the road, according to this, all the previous techniques can
be used, taking advantage of the unique characteristics of the data, e.g. the geometrical distribution
of the classes, the sky and ground di�erences on intensity value, spatial context, and so on. The
recognition of all objects in di�erent sequences in the road dataset, gives way to track objects in
time, laying the foundation for predicting tra�c conditions over a period of time.
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2.3 Human Gait Analysis

Human Motion Analysis is an important research area in several applications such as video surveil-
lance, image retrieval systems, human interaction, and medical diagnostics. The problem that arises
in this type of analysis is the segmentation of the human body in di�erent parts of the body in-
cluding head, limbs, torso and feet. This problem is challenging due to the occlusion of body parts,
variability on the appearance on the images such as clothes with similar colors and �nally the image
perspective. In recent decades, the research works have been carried out in the segmentation of
human body in di�erent parts of videos and pictures directly, as we can see on Section 2, but the
perpective and appearance problems are still remain.

[8] shows a new way in research to incorporate depth images, acquired at a low computational
and monetary cost, in motion analysis. The presented Kinect device, not only provide portability
on the image acquisition, but provides the resources to perform a quantitative analysis of the human
gait through depth values of the human walkers with respect to the camera, without the need to
take into account factors such as sensitivity to the appearance color and texture. They obtained
good results through the set of depth invariant features and a Random Forest classi�er, applied on
millions of frontal plane human images with respect to the camera, but the performance in sagittal
gait images, that are the key in the problem of medical diagnosis, is poor because in the lower and
upper limbs the distinction between right and left is missing due to their occlusion. For this reason
we intend to use the features described in [8], but with a di�erent classi�cation method that can
report a better performance on body parts detection in sagittal images, at same way that does not
need millions of training images for a good performance.

In this paper we explore a technique based on two main strategies: �rst, the division of the scene
in small segments called superpixels using a oversegmentation technique, and, second, to label these
superpixels de�ning a multiclass Support Vector Machine (SVM) and then �nding a labeling that
maximizes the probability given a set of classes. Superpixels are characterized using depth invariant
features. The proposed strategy was tested on the Depth Gait Dataset and showed a competitive
performance.

2.3.1 Related Work

During the past few decades several studies have been conducted through segmenting a human body
to its di�erent parts directly from videos. For example [38] proposed to extract and follow contours
of every body part, these parts are approached by simple 3D geometric objects (blocks), which
3D position and motion are estimated for the each image of the image sequence. The approach
makes use of knowledge about the human body, reference points, optical �ow, contour analysis and
3D shape modeling. In [23] the reported method combines hierarchical body pose estimation, a
convex hull analysis of the silhouette, and a partial mapping from the body parts to the silhouette
segments using a distance transform method that does not violate the topology of the human body.
In [42] Gaussian mixture model is used at the pixel level to train and classify individual pixel colors.
Markov Random Field (MRF) framework is used at the blob level to merge the pixels into coherent
blobs and to register inter-blob relations. A coarse model of the human body is applied at the
object level as empirical domain knowledge to resolve ambiguity due to occlusion and to recover
from intermittent tracking failures. [41] Introduce the approach that uses segmentation to guide an
recognition algorithm to salient bits of the image, using this segmentation approach to build limb
and torso detectors, the outputs of which are assembled into human �gures. In [6] is employed a
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hierarchical visual-hull algorithm which segments only the most interesting regions of the images
and includes colour information. The tracking step uses blobs attached to a kinematic model to
recover joint angles in an expectation-maximization framework. In [?] the body parts detection is
performed in two steps. First, joints candidates are extracted from the silhouette's contour. Then
the model is used to apply constraints to isolate each limb.



Part II

Semantic Segmentation and Analysis
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Chapter 3

Overall Learning Strategy

3.1 Introduction

The semantic segmentation problem is de�ned as follows: given an input image (usually representing
a scene), assign a label to each one of the pixels; the labels are associated to high-level concepts that
give a semantic interpretation to the scene; adjacent components with the same label constitute
the "semantic segments" and are associated to the real world objects indicated by the label.

The problem can be approached from di�erent perspectives. One alternative is to directly assign
labels to the pixels and, after this, �nd the connected components that constitute the semantic
segments. Another alternative, is to �nd �rst a segmentation of the image and then assign a label
to each segment.

We follow an intermediate approach, �rst we found an oversegmentation of the image, then
labels are assigned to each small segment, called here superpixel. Later contiguous superpixels with
the same label can be merged to form the �nal segments. The result is illustrated in Fig. ??. It is
important to said that each superpixel can be de�ned as a set of one pixel, and then, we can handle
a per pixel classi�cation.

Figure 3.1.1: Semantic segmentation of an image using superpixels. The original image is shown
at the left. The right image shows the superpixel-over-segmented image where each superpixel has
been assigned a semantic label indicated by a color.

The algorithms to assign labels to the superpixels (Learning Methods) can be as diverse as we
want; In this thesis we chose to implement a Markov Random Fields (MRF) and a Support Vector
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Figure 3.2.1: Semantic segmentation process

Machine (SVM) method.

3.2 Methodology

The strategy we chose to solver the segmentation problem is divided in two main phases: training
and testing. During training, the Learning Method is trained using a set of labeled images. During
testing the Learning Method is used to assign label to new images. The overall process is illustrated
in Figure 3.2.1.

The training process works as follows:

1. For each image, a superpixel extraction algorithm is applied to �nd an oversegmentation. The
algorithm uses watershed segmentation applied on the image Laplacian based on uniformly
distributed seeds, or the SLIC method. This step is described in Chapter 4.

2. For each superpixel in each image, a feature vector that represents the visual, geometrical or
depth information of the superpixel is calculated. An optional step inside the image character-
ization is the following: The set of all feature vectors, from all training images, is used to build
a Bag-of-Features (BOF) codebook. This is done by applying a quantization algorithm that
could be unsupervised (using k -means) or supervised (using Learning Vector Quantization
LVQ). All the images of the training data set are represented by the corresponding codewords
for each superpixel, additionally the coordinate and color of each superpixel is stored. This
step is described in Chapter 5.

3. A superpixel neighborhood graph is calculated. Two superpixels are said to be neighbors if
they share one or more boundary pixels. Fig. ?? shows a graph for an example image.
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Figure 3.2.2: Superpixel neighborhood graph for an example image.

4. An Learning model is trained by calculating the probability distributions that correspond to
the parameters of the model. This step is described in Chapter 6.

In same way the test process is as follows:

1. For a particular image, the superpixel extraction and image representation processes are
applied as described in the training process.

2. The Learning Model is applied, using the parameters learned during the training phase, to
�nd the superpixels labels.



Chapter 4

Image oversegmentation

It is need to de�ne a strategy to handle the amount of entities to have into account on the training
of learning model, due to the computational complexity involved in classi�cation of all pixels in
each image. The datasets is composed by hundreds of images, then we are going to get millions of
pixels to characterize and classify. The oversegmentation, which is the process by which the objects
being segmented from the background are themselves segmented or fractured into subcomponents,
is therefore a good strategy to reduce the number of example to train. We are going to call this
subcomponents Superpixels.

The superpixels must capture the image redundancy and greatly reduce the complexity of the
image processing task. So, we have two problems, the �rst if we extract a few number of superpixels
the representation will lose redundancy, second, if we extract many of them, the cost computing
classi�cation is comparable with the handling pixels.

Besides this, we want superpixels [2]:

1. They should adhere well to image boundaries to reduce the possibility of misclassi�cation.

2. When used to reduce computational complexity as a pre-processing step, superpixels should
be fast to compute, memory e�cient, and simple to use.

3. They should improve the quality of the results.

There are di�erent strategies to get the superpixels, them can be categorized as either graph-
base or gradient ascent methods. Some of the most important algorithms are: Inside the Graph-
based methods, we found the Normalize cuts algorithm [35]which builds and cuts a graph based
representation of the image, according the contour and texture cues. The cuts are performed
through a globally minimizing a cost function de�ned on the edges at the partition boundaries.
Felzenszwalb and Huttenlocher [20] method performs an agglomerative clustering of pixels as nodes
on a graph, such that each superpixel is the minimun spanning tree. Moore et al [40] proposed
generate the segments �nding optimal paths, or seams, that split the image into smaller vertical or
horizontal regions.

On gradient-ascent based algorithms, we found methods based on Mean Shift that �nd local
and maxima point on the feature color space. Watershed approach[52], that performs a gradient
ascent starting from local minima to produce watersheds that de�ne the superpixels border, and
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�nally, Turbopixels method [31]that progressively dilates a set of seed locations using level-set based
geometric �ow.

On [2], a comparative of these methods are performed, resulting in the conclusion that the
SLIC method proposed by them, produces a better oversegmentations in a shorter time that all
the algorithms outlined in the previous paragraph. Watershed method, which has been widely
used producing good results, uses an opposite strategy to SLIC extraction. Therefore, as super-
pixels extraction methods for this thesis, it was decided to use Watershed and SLIC, to conduct a
comparative study on the use of the two algorithms.

4.1 Introduction

The watershed concept comes from the �eld of topography: in a topographic relief, watershed lines
are the boundaries separating the basins of alluvial rivers and lakes, each basin is associated with
a local minimum of relief. The basic idea of the algorithm is to extend the basins by simulating
a process of �ooding from local minima. In our case the reliefs represent edges in the image and
the result of �ooding de�nes the superpixels to work on. The watershed transformation can be
applied to grayscale images, taking into account that the intensity of a point represents a height in
a topographic relief associated.

On the other hand, the SLIC algorithm generates oversegments through grouping of pixels
according to their color similarity and the proximity in the image plane. This is done in the �ve-
dimensional space [l a b xy], where [l a b] is the color vector of the pixel in the CIELAB color space,
which is considered to be perceptually uniform color for smaller distances, and xy is the position
of pixel.

Some examples of the produced oversegmentation are shown in Figure 4.1.1.
In the context of the Human Sagital Gait and CamVid object recognition problems, the su-

perpixels strategy has completely sense, it is due to the computational complexity involved in
classi�cation of all pixels in every image on di�erent sequences: Depth Gait dataset is composed
by 368 images, about of 95 millions of pixels , meanwhile CamVid has about 701 images that is 484
millions of pixels, all of them need to be characterized and handled, is therefore a good strategy to
reduce the number of samples to train.

4.2 Watershed Oversegmentation

The watershed algorithm strategy is to convert the RGB image to grayscale one, because this can
be seen as a topographic surface where each point's altitude is given by its gray level, in which each
local minimum or maximum represents an edge inside the image.

The surface is �ooded from below by allowing water to rise from each regional minimun at a
uniform rate across the image. When the water level coming from two distinct minimum point is
about to merge, a barrier is lifted to prevent the merging of the sources. Eventually the �ooding
covers all the surface, and the barriers that were lifted would be the watershed lines. The overall
process is illustrated in Figure 4.2.1.

The image can be visualized on three dimensions, two spatial coordinates and one depending on
the grayscale. In this topological representation, all image points can be seen as points belonging
to global minimum/maxima (red and blue areas in Fig. 4.2.2), points placed in the range of the
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Figure 4.1.1: Image oversegmentation examples

Figure 4.2.1: Three di�erent stages of watershed construction by �ooding on a function of one
variable. The �nal watershed lines are given by the thick vertical �dam walls� in (c). [22]
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local minimum/maxima and points that can belongs to more than one local minimum (yellow areas
in Fig. 4.2.2).

The phases of the oversegmentation strategy can be summarize as �ows:

1. Piercing holes in each regional minimum of the image. Initially, the set of pixels with minimum
gray level are 1, others 0.

2. The 3D topography is �ooded from below gradually. In each subsequent step, we �ood the
3D topography from below and the pixels covered by the rising water are 1s and others 0s.

3. When the rising water in distinct catchment basins is about to merge, a barrier is built to
prevent the merging, the barrier boundaries correspond to the watershed lines to be extracted
by a watershed segmentation algorithm.

However in inhomogeneous images the noise generates a large number of local minima, resulting on
oversegmentation in small regions, where not important objects are located, or not represent any
object in the original image. The oversegmentation can be reduced using improved methods and
morphological �lters. If these methods do not improve, one of the best known strategies is to de�ne
unambiguous markers for each of the objects of interest.

Markers or seeds replace local minima and initiate �ooding algorithms, indicating sectors will
result in barriers. In this case, the success of the technique Watershed, depends mainly on an
appropriate selection of markers. Depending on the problem, is it need to de�ne a di�erent heuristics
to choose the markers which will have to start the process [30].

This segmentation technique is recommended for images with homogeneous textures and weak
intensity gradient. Finally, the objects resulting from segmentation corresponding to the minimum
gradient of morphological and contours gridlines water gradient.

4.2.1 Algorithm

There are several implementations of the Watershed algorithm, our methodology takes into ac-
count the Vincent and Soille proposal [52], due to e�ciency in the process of �ooding and lower
computational cost compared to other technical implementations.

The proposal is presented in �ve stages ash shown in Algorithm 4.1.

4.3 Simple Linear Iterative Clustering (SLIC) Superpixels

The Simple Linear Iterative Clustering SLIC [2], adapts k-means clustering to generate superpixels.
It is an algorithm with a simple design, but it has advantages such a the optimization in the search
space to a region proportional to the superpixel size, reducing the complexity to be linear in the
number of pixels N and independent of the number of superpixels k. And on the other hand, a
weighted distance measure combines color and spatial proximity, while simultaneously providing
control over the size and compactness of the superpixels.

Algorithm

The algorithm has into account only one parameter, k. It is the number of equally-size superpixels
that we want to get. As described in [2], the algorithm handles color images in the CIELAB space,
according to these it begins a clustering process over the pixels as shown in Algorithm 4.2.
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Algorithm 4.1 Watershed oversegmentation algorithm
1. The pixels are sorted according to the gray level, then access them through a FIFO data

structure(First Input First Output), to start the process of �ood barriers image.

2. Each of the local minima is assigned a di�erent label, which spreads to all adjacent pixels
within a given level l. It begins by analyzing the binarized image with a threshold l, equal to
the minimum gray value of the image to the binarized image with a threshold equal to the
maximum value of gray.

3. At each step the components connected to the binarization l and l + 1 are analyzed. At the
end of the �ood, all pixels under the Watershed lines have a label indicating they belong
barrier or region. The negative �ooded basins form the Watershed lines between the di�erent
regions of the image, that grew from the regional minimum.

4. The �ood process is done by comparing the image f , binarized with a threshold i, that is
denoted Zi(f), and the image at a higher level Zi+1(f), for i = 0 to i = N , where N is the
maximum gray level of the image is represented. At each level i of the image f it must be
present a regional minimum mi(f). The vessel or barrier image f at i-level, is name Wi(f),
which are initially denoted regional minimum. Wi+1(f) is the result of the �ooding of the
barrier Wi(f).

5. During �ooding, three cases are possible: (1) Growth of an existing barrier in Zi(f). In this
case, if the pixel value of the images being compared, ie Zi+1(f) is greater than Zi(f), occurs
growth (�ooding) of the barrier Wi(f), ie Wi+1(f) is generated, if remains equal the barrier
stays still. (2) Emergence of a new barrier, if the value of the pixel of the images being
compared, ie Zi+1(f) is less than Zi(f), new areas of �ooding appear, ie new barriers. (3)
Determination of zones of in�uence, if the �ood level i+ 1 binds �ooded barriers of level i, it
is need to separate regions using the zones of in�uence of each connected component. In this
case, the barries of i+ 1, that is Wi+1 are zones of in�uence Wi basin.
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Algorithm 4.2 SLIC oversegmentation algorithm

1. The �rst step is the de�nition of the initial k cluster centers de�ned as Ci = [liaibixiyi]
T and

are sampled on a regular grid spaced S pixels apart. The grid de�nes the superpixels that

need to be roughly equally sized, for this reason the grid interval is S =
√

N
k . Each one of

these centroids need to be relocated to to the lowest gradient position, because we need to
avoid centering a superpixel on an edge or a noise area . The centroid can move in a length
invariant searching neighborhood, in this case 3 x3 pixels. The centers are moved to seed
locations corresponding to the lowest gradient position in a 3 Ö 3 neighborhood. This is done
to avoid centering a superpixel on an edge, and to reduce the chance of seeding a superpixel
with a noisy pixel.

2. In the second step each pixel i is associated with the nearest cluster center whose search
region overlaps its location in a neighborhood de�ned by a distance measure D. This reduces
the search space compared to the traditional K-means clustering approach, that compare
every entity against every cluster. The expected spatial extent of a superpixel is a region of
approximate size S × S, the search for similar pixels is done in a region 2S × 2S around the
superpixel center.

3. The third step is about the adjustment of the cluster centers to be the mean [l a b x y]T vector
of all the pixels belonging to the cluster. A residual error must be calculated, between the new
cluster center locations and previous cluster center locations, this can be performed through
the L2 norm. This task can be be repeated iteratively until the error converges.

4. The �nal step enforces connectivity by re-assigning disjoint pixels to nearby superpixels.
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Figure 4.2.2: Maxima and minima representations of a grayscale image

An example of SLIC oversegmentation varying the number of superpixels can be shown in Figure
4.3.1, the irregular segments size and shape are clearly visible. The compactness constraint of SLIC
makes the segmentation much more regular. This improves undersegmentation error and motion
discontinuity error but comes at the cost of lower boundary recall.

Distance Measurement D

The overlapping of the neighborhood region of the pixel i against its nearest clusters center is
de�ned by the distance measure D, between the pixel and the cluster in the CIELAB color space.

The pixel i is represented by [l a bxy]T , whose range of possible values is known, and a position
[xy]T , whose values are de�ned by the image size. To combine the two distances into a single
measure, it is necessary to normalize color proximity and spatial proximity by their respective
maximum distances within a cluster. Doing so, D is written.



CHAPTER 4. IMAGE OVERSEGMENTATION 24

Figure 4.3.1: SLIC oversegmentation example



Chapter 5

Superpixels Characterization and

Representation

Once we get the superpixels that will summarize the content of the image, the next step is to
characterize the content of each of superpixel, in other words, to represent their characteristics such
as low-level property or relationships involving local semantic concepts. In this work were used low
level features such as SIFT for the Road Detection Problem and Depth Invariant Descriptors for
the Human Gait Analysis.

Once the superpixels are describe, a Bag of Features (BOF) codebook can be used to simply
the classi�cation task.

5.1 Scale-Invariant Feature Transfor (SIFT)

The Scale-Invariant Feature Transform (SIFT) allow us to detect and describe local features in im-
ages. It was proposed by [33], from them it has been used wildly in image search, object recognition,
video tracking and gesture recognition, etc.

The algorithm is popular because it detects stable feature points of an object such that the same
object can be recognized with invariance to illumination, scale, rotation and related transformations.

We are going to describe the SIFT algorithm according with its four stages.

1. Scale-space extrema detection

Interest points for SIFT features correspond to local extrema of di�erence of Gaussian �lters at
di�erent scales, this is:

� The interest points location are determined as the local extrema of Di�erence of Gaussians
(DoG pyramid). To build the DoG pyramid the input image is convolved iteratively with a
Gaussian kernels.

� The DoG �lter provides an approximation to the scale-normalized Laplacian of Gaussian.
The DoG �lter is in e�ect a tunable bandpass �lter.
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2. Keypoint localization

Interest points (called keypoints in the SIFT framework) are identi�ed as local maxima or minima
of the DoG pyramid images across scales. For each candidate keypoint we need to evaluate:

� Some keypoints are not good enough or their locations may be not accurate, so we should
interpolate nearby data to accurately determine its position.

� We need to eliminating edge points. Such a point has large principal curvature across the
edge, but a small one in the perpendicular direction.

� It is need to assign an orientation to the keypoint, the principal curvatures can be calculated
from a Hessian function H .

� The eigenvalues ofH are proportional to the principal curvatures, so two eigenvalues shouldn't
di�er too much.

3. Orientation Assignment

To determine the keypoint orientation, a gradient orientation histogram is computed in the neigh-
borhood of the keypoint, so:

� The keypoint descriptor can be represented relative to this orientation and therefore achieve
invariance to image rotation.

� It is need to compute the magnitude and orientation on the Gaussian smoothed images.

� The weighted gradient magnitudes are used to establish an orientation histogram, which has
36 bins covering the 360 degree range of orientations.

� The highest orientation histogram peaks correspond to dominant orientations. A separate
keypoint is created for the direction corresponding to the histogram maximum and any other
direction within 80% of the maximum value.

4. SIFT Feature Representation

Once a keypoint orientation has been selected, the feature descriptor is computed as a set of
orientation histograms on 4 x 4 pixel neighborhoods. The orientation histograms are relative to the
keypoint orientation, the orientation data comes from the Gaussian image closest in scale to the
keypoint's scale.

Histograms contain 8 bins each, and each descriptor contains an array of 4 histograms around
the keypoint. This leads to a SIFT feature vector with 4 x 4 x 8 = 128 elements. This vector is
normalized to enhance invariance to changes in illumination.

5.2 Depth Features

The 3D information, together with the image low-level content, can give us valuable information
about the object location, avoiding problems such as physically similar superpixels but semantically
di�erent, grouped at the same label. This information could represent the depth as a geometric
feature from each superpixel on the oversegmentation model.
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In the case of the Human Gait Database (Section 8.1), where the depth information of the scene
is given, to characterize every single superpixel on the dataset is needed to choose a set of depth
features to describe them, irrespective of the distance of the object, in this case the human walkers
to the camera.

[?] proposed a set of depth invariant features, that adapting to our problem will be described as:
through a pair of o�set vectors of a de�ned length, and located in the center of superpixel that we
are going to describe, we can establish the spatial con�guration of it. This is performed through the
comparison the depth values between a set of superpixels on a neighborhood localized using pairs
of vectors described above. In this way the di�erences in depth will have a speci�c con�guration
for superpixels located near the border of the image, near the delimitation of the space between the
walker and background, and so on.

For every single superpixel x we compute its features with the equation 5.2.1

fθ = d(x+
u

d(x)
)− d(x+

v

d(x)
) (5.2.1)

where d(x) is the depth at superpixel x,θ = (u, v) represents the pairs of o�set vectors u and v
and the normalization factor 1

d(x) guarantees that the features are depth invariant.
To ensure depth invariance must be chosen a set of pairs of o�set vectors that cover a su�cient

space range of the image, for this purpose a distance neighborhood is established and according to
this a set of random or �xed vector are chosen. The neighborhood distance is estimated according
to the average distance the superpixels and the background (distance in pixels), to ensure the
discrimination provided by the de�nition of the features.

For this work we de�ned a set of �xed o�set vector in a squared neighboor, as is illustrated in
Figure []. For each neighboor level, a set of eight vectors are taken, and their combinatorics in pairs
in given to the depth feature algorithm to calculate the corresponding characteristics.

Thus, if we choose to use the �rst neighboor level (8 o�set vectors), we will get 28 feature values,
if we take the second level (16 vectors) we will get 120 features, if we take the third level (32 vectors)
we will get 496 features, and so on.

5.3 Bag of Features (BoF)

The oversegmentation process, for training images, give us several feature vectors classi�ed in one
semantic category, therefore for performing any superpixel classi�cation we need to take into account
every superpixel achieve at training stage, thus the possible values of any latent variable on the
classi�cation model would be unmanageable. An alternative to improve it is to build a codebook
containing visual codeword that represent the output of a clustering algorithm over the training
superpixels, in that way we have a set of representative superpixel to handle in a classi�cation
process. With regard to the superpixel's physical representation, representative algorithms have
proven an e�cient description of the image, these include the SIFT strategy described above,
among others, at same way, there is a set of algorithms for performing the BoF clustering process,
the most popular and e�cient are K-mean, LVQ, Neuronal Networks among others. According
to these possibilities, we need to run some preliminary experiments to calculate the segmentation
quality values and choose the best option for complete our BoF phase.
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Figure 5.3.1: Bag of words representation. [?]

5.3.1 Introduction

To represent an image using BoF model, an image can be treated as a document. The document is
composed by words; in images is need to be de�ned those words, as signi�cant segments inside it.
We can use the BoF model for object categorization by constructing a large vocabulary of many
visual words and represent each image as a histogram of the frequency words that are in the image.
The Figure 5.3.1 illustrates this idea. The motivation to represent the images as a document, comes
from the fact that image features like texture depicts spatially repeating patterns, and many natural
phenomena are textures.

To build the BoF model it is need to follow two steps: (1) feature detection and description,
and (2) codebook generation. In our case, the features described each superpixel. At (1) the
meaningful superpixel's features are explore, the di�erent algorithm that we take into account are
describe on previous section. The codebook generation (2) can be performed in several ways, but
we describe two approximations that show competitive results in the state of the art, K-means and
LVQ, clustering algorithms to summarized the all detected words.

Given a new image, we represent it using the BoF model in the following manner: �rst, extract
descriptors from the image on a grid on the superpixels' center. Next, for each descriptor extracted
compute its nearest neighbor in the dictionary. Finally, build a histogram of length k where the ith

value is the frequency of the ith dictionary word, as is illustrated in Figure 5.3.2.

5.3.2 BoF Generation

Unsupervised K-means Approach

The clustering strategy to summarize the visual words detected, represented by a superpixels and
their corresponding vector of features, divides and segments the superpixels in a prede�ned number
of groups (clusters).

The approximation is describe in Algorithm 5.1.
K-means is a nice method to quickly sort data into clusters, all that is need to know are the
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Figure 5.3.2: Bag of words example. [?]

Algorithm 5.1 K-means algorithm
1. Initial cluster seeds are chosen (at random). These represent the �temporary� means of the

clusters c.

2. The squared Euclidean distance from each object xj , that represents the superpixels centroid,
to each cluster ci is computed, and each object is assigned to the closest cluster ci. There is the
implicit assumption that the data should have roughly the same scale to use such distances.

3. For each cluster, the new centroid is computed and each seed value is now replaced by the
respective cluster centroid ci.

4. The squared Euclidean distance from an object to each cluster is computed, and the object
is assigned to the cluster with the smallest squared Euclidean distance.

5. The cluster centroids are recalculated based on the new membership assignment.

6. Steps 4 and 5 are repeated until no object moves clusters.
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number of clusters are sought to �nd. Local optima in K-means can derail the clustering results,
when de process is not running many times with di�ering starting values[14].

Supervised LVQ

In contrast with k-means, which selects prototypes without using class labels, LVQ adjusts the
position of the prototypes using information given by class labels of each superpixel, taking into
account that the training dataset must be labeled. The Learning Vector Quantization algorithm is
related to the Self-Organizing Map which is in turn inspired by the self-organizing capabilities of
neurons in the visual cortex [27]. The goal here is to have the network "discover" structure in the
data by �nding how the data is clustered. In vector quantization, we assume there is a codebook
which is de�ned by a set of M prototype vectors (amount of superpixels).

An input belongs to cluster ci if i is the index of the closest prototype (closest in the sense of
the normal euclidean distance).

The algorithm is consisted by 3 basic steps. The algorithm's input is: how many neurons the
system will have what weight each neuron has for how fast the neurons are learning . and an
input list containing vectors to train the neurons. The algorithm is describe in Algorithm 5.2.

Algorithm 5.2 LVQ algorithm
1. De�ne the number of clusters N .

2. Initialize the centroids Ci according with the superpixel labels.

3. Initialize learning rate , epochs counter and repetitions counter.

4. For every epoch do the following steps for set vector as the Neural Network's input.

(a) Select the winner neuron.

(b) Update the weight vector for the winner neuron.

5. Check for termination. If not set and return to step 4.

In a nutshell, LVQ moves a prototype closer to the training sample points which have the same
class as the class assigned to this prototype, and move away from sample points from di�erent
classes.



Chapter 6

Learning Algorithms

At this stage we have a set superpixels for training and testing databases, we have already char-
acterize them, and summarized them if it is need. Now we are going to built a learning method
to optimize a performance criterion using example data and past experience (labels by hand) to
classi�ed our superpixels. This strategy is called supervised learning.

Supervised methods are methods that try to discover the relationship between the input at-
tributes (in this case superpixels) and a target attribute (labels). The discovered relationship is
represented in a structure referred to as model. Usually models describe and explain the phenomena,
which is hidden in the dataset and can be used to predict the target attribute value.

Supervised classi�cation is one of the tasks performed most often by so-called intelligent systems.
Therefore, a large number of techniques have been developed based on Arti�cial Intelligence (logical
techniques / symbolic), Perceptron based techniques and Statistics (Bayesian Networks, techniques
based Instance). In following section, we will focus on two of most important techniques of super-
vised machine learning, Markov Random Fields (MRF) ans Support Vector Machines (SVM).

6.1 Markov Random Fields

Markov Random Fields provides a way of modeling mutual in�uences among entities like super-
pixels and their correlated features, through conditional MRF distributions. The MRF is trained
calculating the probability distributions that correspond to the parameters of the model. These
distributions are:

� P (xappi |li): the appearance conditional probability.

� P (xgeomi |li): the geometry conditional probability.

� P (li, lj): the neighboring label join probability.

� P (li): the a priori label probability.

6.1.1 Markov Random Field Model De�nition

A Markov Random Field (MRF) is a graph, (V,E), where each graph node, li ∈ V , corresponds to
a latent variable on a lattice structure, and each edge ei ∈ E, corresponds to edges between those
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Figure 6.1.1: MRF Structure?

variables (An example of this relationship is shown in 6.1.1).
The MRF satis�es the following property:

P (li|V \li) = P (li|Ni),∀i ∈ V, (6.1.1)

where P (li|V \li) represents the probability of the presence of the node li on the graph given all the
vertexes V but li andNi the set of neighbors of li. This is called the locality property and basically
stands that the random variable li is conditionally independent of the rest of variables given its
neighbors.

Usually the MRF's variables take values in a discrete set of labels, Λ = {λ1, . . . , λm}. Also, it
is common to associate each variable li, with a variable xi. In this case, the variable li is called a
latent variable, that means that it cannot be measured directly, and it has to be inferred by the
values of the observed variables, xi. In this particular framework, the problem is: given a set of
observations to infer the most probable assignations for the latent variables, which can be stated
as:

max
L

P (L|X) = max
L

P (l1, . . . , ln|x1, . . . , xn) (6.1.2)

This problem is in principle, a hard problem to solve since the space of possible assignments for
L grows exponentially with the size n of the graph. However, there are e�cient algorithms that
exploit the particular structure of MRF to �nd optimal or close to optimal solutions to this problem.
In general, all the algorithms exploit the so called factorization property of the joint probability:

p(V ) =
1

Z

∏
C

ψC(VC), (6.1.3)

wherep(V ) represents the probability density function of the set of vertexes V , Z is a normalization
constant, C runs over the maximum cliques of the graph.

A clique is de�ned as any non-adjacent variables that are conditionally independent given all
other variables. In case of graphs, the clique is a set of vertex which are all neighbors of each other,
it is for every two vertices, there exists an edge connecting the two. As an illustration turn to
Figure 6.1.2.
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Figure 6.1.2: Examples of cliques with three, four, �ve and six vertices

(a) 8 point neighborhood (b) Examples of clique for 8 point
neighborhood

Figure 6.1.3: Neighborhood system and clique

In case of images, the graph can be seen as a matrix of points in which each pixel represents a
vertex. For an 5x5 pixel image a possible con�guration is illustrated in Figure 6.1.3a; the set of all
possible clique con�gurations, for example on vertex x{2,2} is seen on Figure 6.1.3b.

ψC is function over the variables of the corresponding clique called a potential function. Usually,
the potential functions take the form:

ψC(C) = e−EC(VC), (6.1.4)

where E is an energy function. In this case the joint probability can be expressed as:

p(V ) =
1

Z
e−E(V ) =

1

Z
e−

∑
C EC(Vc), (6.1.5)

as a result, the MRF probability distribution is determined by specifying the energy function, and
minimizing it is equivalent to maximizing the joint probability.

The problem of semantic segmentation is modeled using a MRF as follows:

1. The vertexes of the graph, V , correspond to the set of superpixels extracted from one image,
the edges, E, are determined by the superpixel adjacency relationship.
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2. The labels of the superpixels are modeled by the li latent variables. The observed variables xi
are broken in two variables xgeomi and xappi that correspond to the geometric and appearance
information of the superpixel respectively.

3. The MRF energy function is de�ned as follows:

E(L) = αEapp(L) + δEgeom(L) + βEedge(L) + γEprior(L), (6.1.6)

where:

� Eapp(L) = −
∑
li∈V logP (xappi |li)

� Egeom(L) = −
∑
li∈V logP (xgeomi |li)

� Eedge(L) = −
∑

(i,j)∈Ed logP (li, lj)

� Eprior(L) = −
∑
li∈V logP (li)

This de�nition is motivated by an expression of the conditional probability of the labeling
given by:

P (L|X) =

P (X|L)P (L)

P (X)
=
P (Xapp|L)P (Xgeom|L)P (L)

P (X)
'

P (Xapp|L)P (Xgeom|L)P (L) (6.1.7)

This expression is given by the fact that the evidence probability P (X) is same for all the
di�erent labels and also explains the linear operator at 6.1.6. Since we are interested on the
maximum a posteriori estimation, it is enough to take into account only the numerator.

4. The MRF model the energy function, particularly the edge energy Eedge(L) is de�ned as
follow:

Eedge(L) = −
∑

(i,j)∈Ed

logP (li, lj) (6.1.8)

= −
∑

(i,j)∈Ed log
[
P (li, lj |Cxapp

i
= Cxapp

j
)P (Cxapp

i
= Cxapp

j
)
]

−
∑

(i,j)∈Ed log
[
P (li, lj |Cxapp

i
6= Cxapp

j
)P (Cxapp

i
6= Cxapp

j
)
]

Where Cxapp
i

is a particular metacluster for the xappi superpixel appearance variable. The joint
probability of latent variables is given according to their co-occurence (in adjacent superpixels) in
a training data set. The appearance information of superpixels may be an important factor when
deciding wether to assign the same label to two adjacent superpixels, i.e., two similar superpixels
are more likely to have the same label than two superpixels with di�erent appearance. To achieve
this goal, the BoF codewords are clustered once again into metaclusters, two codewords in the same
metaclusters are considered to be similar, conversely, two codewords in di�erent metaclusters are
considered to be di�erent.
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6.1.2 Integrating the MRF model with 3D information

The 3D information of the images can give us valuable information about the object location,
avoiding problems such as physically similar superpixels but semantically di�erent, grouped at the
same label, this information could represent the depth as a geometric feature from each superpixel
on the oversegmentation model.

The new features on the MRF model can improve the label assignment through the rede�nition
the energy function Eedge(L) as follow:

Eedge(L) = −
∑

(i,j)∈Ed

logP (li, lj) = −
∑

(i,j)∈Ed

logP (li, lj |xi,j) (6.1.9)

= −
∑

(i,j)∈Ed log
P (xi,j |li,lj)P (li,lj)

P (xi,j)

where xi,j represents the di�erence in depth between the i and j superpixels.
One problem in this model modi�cation represents the availability of the data, therefore the

data construction is one important key for the evaluation. The depth values as well as the RGB
image can be obtained through a kinect camera, the ground truth labels must be done manually.
Once we achieve the data set, the corresponding experiments would be performed.

6.1.3 MRF Implementation

The computational problem is to �nd the labels that maximize the posterior probability (Eq. 6.1.2).
Recently, di�erent e�cient algorithms have been proposed to solve this problem including: graph
cuts, loopy belief propagation and tree-re-weighted message passing [50]. In our implementation
we used a general algorithm to solve the max-sum problem in graphs based on linear programming
[55] which implementation is available at http://cmp.felk.cvut.cz/cmp/software/maxsum/.

6.2 Support Vector Machines

6.2.1 Classical SVM

Support Vector Machines is a technique developed by Vapnik and his group at AT&T BELL Lab-
oratories [?] that has proven e�ective classi�er in computer vision tasks. For given observations x
and classesy, we need to �nd a optimal approximation in order to separate the classes with a set of
hyperplanes so as to maximize the margin among them, but as the SVM was designed for binary
problems, we must to use the associated strategy one-against-all decomposition to �nd the most
probable classi�cation for each one of the observations x.

The thesis problem consists in the classi�cation of each one of the superpixels, or observable
variables x (superpixels), into a set of N labels, or classes y.

The one-against-all strategy decomposed the problem a N -binary decision Fm where m =
1, .., N , in which one hyperplane separates one class from all the rest, therefore, the training ob-
servation x must be separated according to their corresponding class. Then, in the test phase the
classi�cation of a superpixel x is performed according to maximal value of functions Fm(x).

The optimization method for each Fm(x) function consists in de�ning a hyperplane in the
feature space described as the equation wTx + b = 0, where b is a scalar. If the training samples
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are linearly separable, the optimal hyperplanes with no errors and maximum margin are the result
of the optimization problem in the equation (6.2.1).

In the other hand nonseparable samples cannot ensure error-free classi�cation, so, the optimiza-
tion idea can be generalized by introducing the concept of soft margin described in the equation
(6.2.2), where ξi are called slack variables that are related to the soft margin, and C is the tuning
parameter used to balance the margin and the training error.

minimize : L(w) =
1

2
‖ w ‖2

subject to : yi(w
Txi + b) ≥ 1, i = 1, ..., N. (6.2.1)

minimize : L(w, ξi) =
1

2
‖ w ‖2 +C

N∑
i=1

ξi

subject to : yi(w
Txi + b) ≥ 1− ξi, i = 1, ..., N. (6.2.2)

To solve both optimization problems can be posed as a constrained quadratic programming
(QP) problem. The solution of problem (6.2.1) gives rise to a decision function of the form (6.2.3).
The corresponding pairs of xi entries are known as support vectors and they fully de�ne the decision
function. The support vectors are geometrically the points lying near the class boundaries. The
problem (6.2.2) has the decision function (6.2.4) where k(x;xi) is a nonlinear kernel function.

f(x) = sgn

[
N∑
i=1

yiαi(x · xi) + b

]
(6.2.3)

f(x) = sgn

[
N∑
i=1

yiαik(x · xi) + b

]
(6.2.4)

6.2.2 Sthocastic SVM

The optimization problem can be solved on a iterative manner, it is, �nding the optimal solution at
each step on the training phase in which just one example is having into account. The optimization
process in this case depends on the examples randomly picked at each iteration. Stochastic Gradient
Descent (SGD) is an example of this iterative optimization, instead of �nding the gradient or
optimum for the function (6.2.2), estimates his gradient on the basis of a single randomly picked
example xt in this manner

wt + 1 = wt=Ct∇wQ(xt, wt). (6.2.5)

where xt is a random picked superpixel at the t time. This optimization depends directly on the
stochastic process that determines the order of random chosen examples. Due to the large number
of handle examples, is expected that the optimization behaves like (6.2.2).
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6.2.3 SVM Implementations

In this work we used the classical SVM implementation from 3.20 LibSVM[?], that has into this
features:

� Di�erent SVM formulations E�cient multi-class classi�cation.

� Cross validation for model selection Probability estimates.

� Various kernels (including precomputed kernel matrix).

� Weighted SVM for unbalanced data.

� Both C++ and Java sources GUI demonstrating.

� SVM classi�cation and regression.

� Python, R, MATLAB, Perl, Ruby, Weka, Common LISP, CLISP, Haskell, OCaml, LabVIEW,
and PHP interfaces. C# .NET code and CUDA extension is available.

� It's also included in some data mining environments: RapidMiner, PCP, and LIONsolver.

� Automatic model selection which can generate contour of cross validation accuracy.

Also, we prove the Stochastic Gradient Descent applied to SVM through the SGD library [?] that:

� Implements a straightforward stochastic gradient descent algorithm.

� The learning rate has the form η0/(1 + λη0t) where λ is the regularization constant.

� The constant η0 is determined by performing preliminary experiments on a data subsample.

� The learning rate for the bias is multiplied by 0.01 because this frequently improves the
condition number.

� The weights are represented as the product of a scalar and a vector in order to easily implement
the weight decay operation that results from the regularization term.
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Experiments and Results
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Chapter 7

Road Object Detection

7.1 Cambrige-driving Labeled Video Database

One of the key elements that makes its way to solving the problem of semantic image segmentation
is a set of images containing a physical description of the objects that make up the di�erent scenes
and the respective association of semantic concepts of objects in each contexts, for that reason the
Cambridge-driving Labeled Video Database (CamVid) [9]became one of the datasets candidate for
using in our proposal, also it is a online available dataset, each and every one of the containing
images are labeled, and one important element to be added, is that the labeled dataset can be
useful to �nally evaluate existing algorithms quantitatively.

CamVid addresses the problem of video-based object analysis providing data that is labeled with
ground truth, it allows to train algorithms that leverage motion cues for recognition, detection, and
segmentation. The dataset is a collection of 701 images (with 960×720 pixels) taken with a camera
mounted inside a car and �lmed over two hours of video footage. The CamVid dataset published is
the resulting subset, lasting 22 min, 14 s. A high-de�nition 3CCD Panasonic HVX200 digital camera
was used, capturing 960 x 720 pixel frames at 30 fps (frames per second). The resulting subset
were group into three daytime sequences, contains special physical features such as variations in the
intensity of light and di�erent locations (roads), and were shot and selected because they contain a
variety of semantic object like cars, pedestrians, cyclists and events as moving and stationary cars,
cyclists ahead and along side the car, pedestrians crossing, driving through a supermarket parking
lot, accelerating and decelerating, left and right turns, navigating roundabouts.

At the end the dataset associates each pixel of each image with one of 32 semantic classes that
were identi�ed in the sequences and that could have interest to drivers. A sample of those images
with the labels can be seen in Figure 7.1.1, and the color code that were use to label them in Figure
7.1.2.

7.2 Superpixels Extraction

One of the most important issues in the model construction we propose is, what oversegmentation
method to use. To to answer the question a test performance evaluation for both oversegmentation
methods is done.

39
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Figure 7.1.1: CamVid aamples

Figure 7.1.2: CamVid label code color
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We are going to compared the two oversegmentation strategies, watershed and SLIC superpixels,
this is accomplished by running the algorithms on a subset of images evaluating the output using
the following metrics: number of superpixels, execution time, average entropy and average purity
of the superpixels.

7.2.1 Performance Measures

Entropy We de�ne entropy as a measure of disorder (inhomogeneity) within each superpixel, so
if a superpixel covers only one labeled class, the lowest value of entropy is achieved.

In this context xij is de�ned as the number of pixels of class i within the superpixel j, therefore
the entropy of thej superpixel is de�ned as

Ej = 1
Nj

∑ Xij

Nj
Log(

Xj

Nj
)

where Nj is the total number of pixels inside the j superpixel.
In this vein, the total image entropy is de�ne as the average of the Ejvalues

ET = 1
N

∑
Ej

where N represents the number of superpixels. A more accurate measure could be reached
weighting each superpixel entropy according to the size of the corresponding superpixel.

Purity Purity makes referral to the domain percentage of the main class inside a superpixel. The
optimal purity is 100%. This measure is highly correlated with entropy. Its main advantage is that
it is easier to interpret.

Comparison

7.2.2 Previous Watershed Exploration

The Watershed algorithm has two parameters, the threshold and the number of steps to execute,
therefore, to compare the algorithm to SLIC method, we need to explore this to parameters to
know how many superpixels are extracted and how them behave.

Test Setup

The design for both tests to be performed consists of a re�nement phase, in which experiments are
done over one image, in order to evaluate the most signi�cant parameter range, this is the limit in
which the model presents the best entropy without a critical increase on the superpixels number
or runtime. Once the range is known, we proceed to execute the experiments on 100 images from
the database (randomly chosen). Finally, with the quantity results we will make an analysis of
dependence between the parameters and performance in order to establish the optimal values for a
subsequent use in the MRF building.
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Parameter Interval Values

Threshold 0-50 0,5,10-. . . 45,50
Steps 10-200 10,20. . . 190,200

Table 7.1: One image experiment parameters

Figure 7.2.1: One image - Laplacian execution time

One Image Analysis

For this experiments we use a randomly chosen image and the interval of the parameters is speci�ed
in the Table 7.1.

We considered therefore 11 di�erent values of threshold and 20 di�erent number of steps, leading
to 220 results, or oversegmented images. In preliminary execution tests, the entropy time evaluation
was de�ned within 10 and 20 seconds, according to this, the experimental test were planned to run
between 36 to 73 minutes.

Watershed Tuning Performance

Oversegmentation Time This test is related to the Watershed execution time. The graphical
results are show in the Figure 7.2.1. As we can see, the execution time for every value of the
parameters is close to the interval of 0.2 to 0.4 seconds. Some speci�cally values draw some peaks
in the graphic, but these can be seen as outliers.

Number of Superpixels This test is related with the number of entities that the Watershed
algorithm provides. The graphical results are show in the Figure 7.2.2. This is a useful result,
because give is an concrete idea of the number of superpixels that we are going to get according
with the threshold and steps parameters.

Superpixels Entropy This test calculates the average entropy of the superpixels according to
the parameters value. The graphical results are show in the Figure 7.2.3. Insofar as we reduce the
number of steps, the entropy is dramatically minimized. Meanwhile, the threshold seems to have
no relevance on results.
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Figure 7.2.2: One image superpixels according with threshold and steps

Figure 7.2.3: One image entropy for di�erent threshold and number-of-steps values
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Figure 7.2.4: One image entropy. Each point corresponds to a run of the algorithm with a particular
set of parameters.

Figure 7.2.5: One image entropy

Relationship between Number of Superpixels and Entropy With the results obtained in
previously tests, we can draw the relationship between the number of superpixels and the entropy
in Figure 7.2.4. As it was expected, when the number of superpixels grows the value of the entropy
decreases. The idea is to �nd a good compromise between a low entropy value and a low number of
pixels. This is accomplished by identifying the graph elbow. In this case, the target points are in
the range of 200 to 400 superpixels, which correspond to results generated by running the algorithm
with a threshold value of 30 to 50 and 20 to 50 steps.

An overview of the critical points for the previous entropy graphs, de�ne the relationship or
qualitative similarity between the appearance of di�erent images. We chose the critical point (16,
1.12), (235, 0.42) and (719, 0.27) that generates the over-segmented images in the Figure 7.2.6.

Is evident, that the mid-point chosen, which is included within the optimal range, better de�nes
the objects inside the image without generating a signi�cant increase of entities, therefore, we can
ensure that the chosen interval is appropriate.

The second test highlights the dependency of the number of superpixels on threshold parameter,
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(a) (b) (c)

Figure 7.2.6: One image qualitative analysis. The Images were generated with a) 190 steps and 0
as threshold b)50 steps and 50 as threshold c) 30 steps and 10 as threshold

because for large values of the steps parameter, the number of superpixels becomes stable. Thus the
test validity establishing the range for 0 to 50 steps. The entropy evaluated in the third experiment
shows the steps parameter dependence, because the threshold shift in the axis are constant. Another
notable conclusion in the graphic is that as smaller number of steps, smaller is the entropy value
obtained, in this way, the steps becomes a de�ning parameter.

One Hundred Image Analysis

According to the one-image analysis, for this experiment we take 3 threshold values (30, 35 and 40),
and 7 di�erent values for the number-of-steps (20, 30, 40, 50, 80, 90 and 100). These combination
of parameter values produces 12 di�erent output for each image. Because we provide 100 images
to the algorithm, the procedure will generate 12,000 results equivalent to 3.3 to 6.6 hours of total
run time.

Characteristics Performance The characteristics to evaluate are the same than in the previous
experiment. The summary of each of these instances is given in Table 7.1.

Experimental Analysis The overall behavior of the experiments shows the same trend as for a
single image test, upholding the approach to global optimal algorithm parameters.

Performing the analysis of the entropy versus superpixels graph in Figure 7.2.7 a optimal elbow of
the performance function is speci�ed, which generates a gain in entropy without critically increasing
the complexity of the model. This point is near to 600 superpixels and an entropy value of 0.35
that is equivalent to 20 steps and 30 or 35 threshold value.

Conclusions

The choice of suitable parameters for the Watershed algorithm optimization requires an analysis
that includes the value of the computational time, the model complexity (number of superpixels)
and generally good performance of the model, in a such way that the balance between these as-
pects becomes essential in order to establish the appropriate environment for the construction of a
probabilistic segmentation model.
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Steps Threshold Entropy Purity # Superpixels

20 30 0.35 0.93 603.75
20 35 0.40 0.93 538.91
20 40 0.45 0.93 482.91
30 30 0.39 0.92 333.95
30 35 0.44 0.92 301.71
30 40 0.48 0.91 274.59
40 30 0.43 0.90 215.84
40 35 0.47 0.90 197.46
40 40 0.50 0.90 181.28
50 30 0.44 0.89 167.59
50 35 0.47 0.89 154.59
50 40 0.50 0.89 143.36
80 30 0.58 0.85 75.55
80 35 0.61 0.86 70.80
80 40 0.65 0.86 66.32
90 30 0.62 0.85 63.5
90 35 0.65 0.85 60.00
90 40 0.68 0.85 56.66
100 30 0.60 0.86 60.37
100 35 0.63 0.86 56.99
100 40 0.65 0.86 53.80

Table 7.2: 100 images segmentation results for di�erent parameter values. Each metric corresponds
to the average over the 100 di�erent results.

Figure 7.2.7: All images entropy
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# Superpixels
Watershed SLIC

Entropy Purity Execution Time Entropy Purity Execution Time
300 0.44 0.92 3.0seg 0.56 0.92 2.5 seg
400 0.45 0.93 3.25seg 0.48 0.94 3.0 seg
600 0.35 0.93 5.0seg 0.40 0.91 4.0 seg

Table 7.3: Oversegmentation comparison

7.2.3 Oversegmentation Comparison

Now that we have a Watershed analysis of a good number of superpixels to take into account, we
compare the two oversegmentation strategies on a 10 randomly chosen dataset. The results can the
seen in Table 7.3.

As the results show, the entropy and purity of the superpixels are comparable, but SLIC su-
perpixels outperforms the extraction time of the Watershed method. This may become a critical
feature when we are dealing with large data set, or applications requiring data processing in real
time.

7.3 Experimental Results

7.3.1 Experimental Setup

The images of the Cambridge-driving Labeled Database were divided in a training data set with
367 images and a test dataset with 233 images (101 images were not used), following the same
experimental setup as the one used in [9].

The experimental results are separate into two phases, at �rst we perform a parameter tuning
over a test data set, achieving the best values for alpha, betha, gamma and delta parameters, later
we run a �nal evaluation experiment over a validation image set for achieving the accuracy for
each one of the semantic classes, obtaining in this way a conclusive global accuracy value. This
process is applied for the three proposed MRF models, MRF with appearance information, MRF
with additional geometrical values, and MRF with a modi�ed label join probability.

7.3.2 Results

Superpixel extraction and representation

Approximately, 3 × 105 watershed superpixels were extracted from the training image data set.
This set of superpixels was broken again in training and test sets with 105 and 2× 105 superpixels
respectively. These sets were used to tune-up the relative weight of the color components in the
superpixel descriptor (3 color components vs. 128 SIFT features). The impact of the color weight
in the codebook construction is evaluated using the average codebook word entropy and accuracy.
The entropy of a codebook word w corresponds to the entropy of the label distribution given the
codebook word: P (l = λi|w). The ideal case correspond to a word with entropy equal to 0, i.e., a
word that uniquely determines a label. To calculate the accuracy, each word is used as a predictor
of the superpixel label, assigning the label with the highest conditional probability. According
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Figure 7.3.1: Performance of LVQ and k -means for BOF codebook construction. Entropy (left)
and accuracy (right).

to a parameter analysis on the codebook construction, the color information contributes to the
discriminative power of words.

BOF codebook learning

An important part of the codebook construction is the algorithm used to �nd the most charac-
teristic codewords from a set of superpixels descriptors. The most common alternative in BOF
representation is k -means. However, it ignores the label information that may help to build a
more discriminative codebook. We used Learning Vector Quantization (LVQ), which uses the label
information to guide the codebook learning process, as an alternative to k -means. Figure 7.3.1
shows that LVQ performs better reducing the entropy and increasing the accuracy of the resulting
codebook. Entropy was evaluated on the training data set and accuracy on the test data set.

These tuning results show the importance for leaning concepts (classes) inside the semantic
segmentation task e.g. learning of labels and using the split and merge procedure to de�ned
representative clusters and therefore decreasing the distortion through the LVQ algorithm. K-means
results by the way are relative to initial centroids and can be skewed towards at not semantic sense
clusters.

Semantic segmentation using appearance

The �rst set of segmentation experiments were performed without taking into account the geometric
information of the superpixels, i.e., the δ coe�cient in Eq. 6.1.6 was set to zero (actually the
�rst version of the segmentation program didn't take into account geometric information). The
α parameter was kept equal to 1 and the other parameters were varied. Figures 7.3.2 and 7.3.3
show the performance, in terms of annotation accuracy, for training and test data sets respectively.
In training data, the maximum performance is reached when only the appearance component of
the energy is taken into account (α = 1, β = γ = δ = 0), this has to do with the fact that the
appearance conditional probability was learned using the training data set, so the performance on
this data set is expected to be good, but it doesn't has to be the case for test data. In fact, for test
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Figure 7.3.2: Parameter tuning on training images. The beta and gamma parameters are varied
while keeping alpha=1.
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Figure 7.3.3: Parameter tuning on test images. The beta and gamma parameters are varied while
keeping alpha=1. The right image shows a detail of the region where the maximum accuracy is.

data the joint label probability associated to labels (controlled by β) is important to increase the
performance from 30% of accuracy to 34%, Figure 7.3.3.

Semantic segmentation using appearance and geometrical information

The proposed algorithm involved geometric and appearance information, therefore the coordinate
of the morphological center of each superpixel1 , exactly where the superpixel SIFT descriptor is
calculated, was recorded and a probability distribution was estimated independently for each label
class. The distribution used was a bivariate Gaussian. The vertical axis symmetry of the images
was exploited to make the estimation problem easier. The original x coordinate that was in the

1The 'morphological center' is de�ned as the maximum of a distance map calculated in the superpixel with respect
to the superpixel boundary. It is possible that there are more than one pixel with the maximum distance, in this case
the tie is broken arbitrarily choosing on of the maximum. The ' morphological center' is the point of the superpixel
which is at maximum distance of any boundary pixel.
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Figure 7.3.4: Geometric distributions for di�erent label classes.

range [0, 320) was mapped to the range [0, 159) by applying the transformation x′ = min(x, 319−x).
Figure 7.3.4 shows a plot of the estimated probability density function for two sample semantic

classes, the sky and road. It is easy to see that those are classes that are well localized, i.e., some
classes are more likely to appear on some particular areas of the images. Figure 7.3.5 shows how in-
creasing the importance of the geometric information improve the performance of the segmentation
system.
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Figure 7.3.5: Accuracy in the test set for a MRF model that takes into account geometry in addition
to appearance. The Delta (δ) parameter controls the importance of the geometrical information.

Same as before, the parameters of the model are tuned up using the test data set. The best
values found were α = 0.6, β = 0.04, γ = 0, and δ = 0.8.

At same way the label joint probability was re-de�ned and put to the test for tuning, taking
into acount metacluster sizes of 250, 500, 750, 1000 and 1500, and speci�c exploration of 600 and
850.The best results achieved on the test data set were α = 0.8, β = 0.04, γ = 0, and δ = 1 for a
metacluster size of 750 as can be showed at Figure 7.3.6. This result implying an improvement in
the accuracy values, highlighting the importance of the label co-occurence.

Final Evaluation

Performing the experiments into the validation test we obtained the following results. The confusion
matrix of the semantic categories of the data set are given in Table7.4 where MRF with appearence
and geometrical information were characterized. All these values are summarized in Table7.5, where
accuracy comparison is made against the representative algorithms in the literature: a baseline
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Figure 7.3.6: Accuracy in the test set for a MRF varying the Beta (β) parameter which controls
the importance of the edge energy, which is related to the join label probability, and de�ning some
metacluster sizes.

based on SVM, co-occurence labels and superpixels [?], among others.

7.3.3 Discussion

The �rst important result is that no one of the methods achieve a signi�cant accuracy for all classes.
This indicate that the problem is hard and that further research is required. Second, the experiment
re�ects the importance of geometric information, obtaining an improvement of up to 33% for the
method in [1], 10% in [?] and 24% in our model. Some of the results are biased by the kind of
geometric descriptors, Micusik, for example, makes use of 3D information provided inferred from
the video stream, while our model focuses on 2D information, therefore one of the improvements
to follow is the integration of 3D and even 4D information in continuous video, as is the case for
the CamVid data set. Third, we can see that in some speci�c classes the precision is high, and all
methods perform competitively, such as sky, road and sidewalk. In some others, the performance
varies disproportionately as fence, sign and column, and in the last ones the achieved accuracy is
considerably low as in bicyclist. This behavior is derived from the way each one of the entities of the
problem is described and how they are related. Finally, although our model does not produce the
best results in all classes, actually only in sky, the proposed method produced encouraging results,
which are worthy of further research.
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Chapter 8

Human Gait Analysis

The overall body part classi�cation process is described in Figure 8.3.1. The sequential diagram
describes the phases that composed the classi�cation task; The �rst phase makes allusion of the
image pre-processing that is discussed at Section8.1. This step provide us a set of superpixels from
the training dataset, we can chose to have not into account the void class inside the classi�cator,
through the background substraction, establishing the superpixels within the human silhouette as
the only entities to classify. The background substraction is performing by the arithmetic sub-
traction of the depth image with respect to a generic image from the background plus and slack
variable.

The second phase, performs the superpixels characterization. With this information the third
phase proceeds to the superpixels dataset building, that assigns to each characterized superpixel
a semantic class, in this case on of the eight body parts, in this manner we have a consistent and
usable training dataset.

The �nal phase is about the leaning model construction, whereby, new image samples without
labeling manual will be segmented.

8.1 Data Acquisition and Processing: Human Body Parts
Database

Human Motion Analysis is an important research area in several applications such as video surveil-
lance, image retrieval systems, human interaction, and medical diagnostics. The problem that
arises in this type of analysis is the segmentation of the human body in di�erent parts of the body
including head, limbs, torso and feet. This problem is challenging due to the occlusion of body
parts, variability on the appearance on the images such as clothes with similar colors and �nally
the image perspective.

To test the robustness of our image segmentation framework, we decided to apply it to the
human body parts recognition problem. To this end, we constructed a dataset comprising image
sequences of frontal human gait, which describe the natural movement of di�erent persons over
time. The sequences were acquired through a Kinect device, that con only provides RGB images
but depth mapping, that can be useful to the extent that allows us to get more information on the
scene to assess.

54
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Figure 8.0.1: Semantic segmentation process.

8.1.1 Kinect Sensor Device

The Microsoft Kinect device was originally realeased for allowing to users play video games through
only the movement of their body, this is achieved through an RGB camera, an infrared depth sensor,
an accelerometer, four microphones and a motor to adjust the tilt.

This gaming device not only attracted the gaming and commercial attention but the scienti�c
one, because it integrates di�erent acquisition features, its low price and its shelf availability.

The infrared sensor helps to build the depth map by analyzing a speckle pattern of infrared laser
light combined with the monochrome CMOS sensor, it is done through structured light general
principle that project a known pattern onto the scene and infer depth from the deformation of that
pattern, so, the calibration between the projector and the camera has to be known.

Each one of the depth values of the images can be represented as a 3D coordinate or a grayscale
value. Kinect software is capable of automatically calibrating the sensor based the physical envi-
ronment, accommodating for the presence of furniture or other obstacles.

The Kinect sensor outputs the RGB video at a frame rate of 30 Hz. with VGA resolution (640 Ö
480 pixels) with a Bayer color �lter, meanwhile the depth sensing video stream with same resolution
and 11-bit depth.

8.1.2 Image Acquisition

The use of kinect, device composed by two depth sensor and an RGB camera, not only reduces
the image acquisition cost on the speci�c gait analysis problem, but it ensures the portability of a
working tool that intends to provide gait laboratory service.

The Depth Gait Dataset we build is composed by 368 diverse gait movements of eight di�erent
persons, and was acquired using the Kinect device. The dataset is composed by RGB images and
the corresponding depth scanning, this last represented by a grayscale image. Both images have a
resolution of 640x480 pixels, but because of Kinect device has an intrinsic problem of calibration
between the RGB image and its corresponding depth map, it is the appropriate the data pre-
processing, setting a single 589x442 pixels resolution.

The setup of the image acquisition is illustrated in Figure 8.1.1. Each one of the nine persons
walked across a runway without obstacles, sagital side from the camera, on a gait cycle of approxi-
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Figure 8.1.1: Image Acquisition

mately four minutes in duration. The persons that were chosen have di�erent characteristics such
as weight, body volume, texture and color of the clothes. In total were taken �ve women and four
men gaits rightward and leftward.

The rightward sequences labeled into nine di�erent body parts, among these are the head, limbs,
arms, front and back torso and feet. The choice of these body parts is due to the support they
provide in the prediction of the human body joints. The segments together with the coordinates of
the joints give way to human gait analysis.

8.1.3 Hand-Labeling Process

Based on each pair of images was carried out the labeling process, sets out twelve labels for speci�c
body parts (head, torso, left and right arm, left leg and right, left and right foot) that de�ne target
points for gait analysis. The labeling process was performed manually with the guidance of Layer
segmentation tool [?]. Some examples of the data set are found in Figure 8.1.2.

8.1.4 Joints Labeling

We use The Human Annotation Tool (HAT) [Reference http://www.eecs.berkeley.edu/~lbourdev/hat/]
that allows us to annotate the body structure, for example joints and their spacial relationship,
thereby de�ning an outline 3D position of the person in a given image. HAT was developed in java
and provides an applet interface in which the user can annotate each one of the joints, building in
real time the 3D skeletal position. One example of the process can be seen in Figure 8.1.3.

The result of these annotation process are a list of XML �les, one for each image, containing
the coordinates of 13 joints, these are head, shoulders, elbows, wrists, hips, knees, ankle and joint
of the big toe.
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Figure 8.1.2: Image dataset samples



CHAPTER 8. HUMAN GAIT ANALYSIS 58

Figure 8.1.3: Human Annotation Tool on Gait Images



CHAPTER 8. HUMAN GAIT ANALYSIS 59

Figure 8.2.1: Growth of database

8.2 Database Size

Once the images that compose the dataset are organized and labeled, the next steps in our method-
ology is, �rst to set the number of SLIC superpixels to extract per image, and second, to explore
the parameters of the feature extraction algorithm.

By choosing as superpixels descriptors the characteristics described in Section 5.2, the parame-
ters to consider are the number of o�set vectors and their possible combinations.

Variations on the number of o�set vectors and superpixels to extract, lead to an increase or
reduce the size of train and test of the database. Thus, it is need to perform a comparative analysis
of the number of vectors and superpixels against the size of the database.

Taking into account the analysis made Section 7.2, which identi�es that a number of between
350 and 2000 superpixels, guarantee stable values of entropy within the dataset, so it is explored
within this range. Regarding o�set vectors, and considering the restriction to be made about these
in a neighborhood of 8, the possible values evaluated are 8, 16, 32 and 64, a large value produces a
big number of features per superpixels, this is not well handled by the SVM classifying to use.

The exponential growth in the size of the data set is shown in �gure 8.2.1.
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8.3 Experimental Results

8.3.1 Preliminary Tuning

As was said in previously section, we have to take into consideration the number of pixels, the
numbers of o�set vectors, and additionally, the length of the vectors. So it is necessary to make a
prior exploration of these parameters, to establish a set of the most successful experiment.

Therefore we made the parameter exploration over the training dataset (described below), it is
done performing 10-fold cross validation, for each of 10 experiments, use 9 folds for training and
the remaining one for testing . We take into account 100.000 samples per class. The results are
presented in Table X.

8.3.2 Experimental Setup

For the experimental setup the dataset was divided into training and testing items, selecting 326
images for training and the remaining 41 images for testing. The parameters taken into account in
the experiment are the amount of superpixels by image and the number of features or o�set vectors.
As performance metrics of the classi�cation we use the accuracy of each of the parts of the human
body through the confusion matrix between the ground truth labeling and the most probable label
assignment given by the classi�er.

The number of o�set vectors that we take into account are 32 and 64, in a neighborhood of
about 10 pixels, that de�nes 496 and 2016 features. The length of the vector is set in 3000 and
5000. At same way we extracted 350 superpixels per image.

8.3.3 Results

The accuracy obtained for each of the explored classi�cation methods is summarized on the Table
8.2. This performance measure can be described in detail by the per class accuracy as shown in
Table 8.4. The confusion matrix of the results are show in Table8.5.

Finally the performance of the methods can be measure through the computation time of the
training and testing phase, this values are listed in Table 8.3.

8.3.4 Discussion

According to the images on Figure 8.3.1, we can conclude that the segments are correctly placed, and
in a qualitative manner the right and left di�erentiation, missing on[?], is being correctlyaddressed,
since the limbs are not confused.
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# O�set Vectors

32 64
Vector Length 3000 5000 3000 5000

Method Stochastic SVM 96.6795% 97.0723% 97.9914% 97.9247%

Table 8.2: Performance comparison of methods through accuracy measurement on the testing phase,
according to the number of superpixels per image

Maximun Training Samples per Class

Method 1000 5000 10000 100000
Training Testing Training Testing Training Testing Training Testing

Stochastic SVM 0.5min 3seg 1.6min 5seg 3min 10seg 4min 15seg

Table 8.3: Performance comparison of methods through time measurement on the training phase.

Classes

Method Head Right Arm Left Arm Front Torso Right Leg Left Leg Right Foot Left Foot Void

Stochastic SVM 89% 75% 33% 86% 81% 69% 71% 52% 100%

Table 8.4: Per class accuracy for the best average testing accuracy
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Head 89.0% 1.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 10.0%
Right Arm 0.0% 75.0% 0.0% 9.0% 5.0% 1.0% 0.0% 0.0% 11.0%
Left Arm 0.0% 0.0% 33.0% 0.0% 0.0% 0.0% 0.0% 0.0% 67.0%
Front Torso 1.0% 6.0% 0.0% 86.0% 1.0% 0.0% 0.0% 0.0% 7.0%
Right Leg 0.0% 0.0% 0.0% 1.0% 81.0% 7.0% 0.0% 0.0% 11.0%
Left Leg 0.0% 0.0% 0.0% 1.0% 13.0% 69.0% 0.0% 1.0% 17.0%
Right Foot 0.0% 0.0% 0.0% 0.0% 4.0% 0.0% 71.0% 0.0% 25.0%
Left Foot 0.0% 0.0% 0.0% 0.0% 4.0% 4.0% 4.0% 52.0% 37.0%
Void 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100%

Table 8.5: Image Gait Analysis Confusion Matrix
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Figure 8.3.1: Segmented images



Chapter 9

Conclusions

This thesis has presented a strategy to address the problem of image understanding. This thesis
focused on image segmentation by using machine learning and image processing techniques. The
proposed methods were evaluated with performance measures, which allowed to determinate the
performance of such methods in an objective way. This thesis evaluated the proposed strategy in
di�erent contexts such as Road Object Detection and Human Body Parts Identi�cation.

Results show that depth invariant features extraction that allows the SVM model construction,
show very good results in Body Parts Identi�cation. At same way the MRF model outperforms
the road object identi�cation according to the SVM base line. The main contribution of this
research work is a the MRF model construction, and the body identi�cation strategy. The following
subsections discuss di�erent aspects of the addressed problems and of the strategies used to tackle
them.

9.1 Road Detection

A well de�ned joint label probability along with a quality geometrical information, has been shown
be the �rst step in a competitive segmentation method de�nition, at same way that the represen-
tation and description of the image not only facilitate the modeling of the problem but to establish
an e�cient labeling process extensible to several data sets.

We have presented a MRF model that achieve promising results and o�ers a robust framework
to include some more speci�cally information, that derives an e�ective way to segment an image.
As part of future work are exploration of alternative oversegmentation strategies, geometrical in-
formation improvement, through 3D information integration (and even 4D), analysis for new ways
to de�ne the neighborhood graph and probability de�nitions inside our MRF Model.

9.2 Human Gait Analysis

The work has proposed a SVM and SGDSVM methodologies for human body segmentation into dif-
ferent body parts, that have been shown be the a competitive segmentation methods. We obtained
average accuracy values over 97%, for this reason any of the two methods solves the semantic seg-
mentation problem satisfactorily. If we need to achieve high computational performance on training

64
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and testing phase, it is better to use the SGDSVM approximation. On the other hand if we need
to take the highest values of accuracy without taking into account the computational cost, SVM
provides better support.
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