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Introduction problem

Problem: Describe the evolution of the temperature distribution of a body (1D
rod) being heated in one of its tips

Principle: Energy conservation

Consequence: The total variation of the energetic contents within each region in
the rod [x, x+ ∆x] equals the net heat flux through the region
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Definition of PDE

A partial differential equation (PDE) is an equation establishing a relationship between
a function of two or more independent variables and the partial derivatives of this
function with respect to these independent variables – i.e., given the multivariate
function f(x1, x2, . . . , xn) : Rn 7−→ R, the expression

F (f, fx1
, fx2

, . . . , fxn, fx1x1
, fx1x2

, . . . , fx1x2···xn , . . . , fxn···xn. , x1, x2, . . . , xn) = 0

is a PDE where its order corresponds to the maximum number of derivatives in the
equation
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Goal of modeling by PDEs

When approaching to the mathematical modeling of a particular system by PDEs, a
major question arises:

Goal of Modeling

Which PDEs are good models for the system?

Scientific method behind

Good models are often the end result of confrontations between experimental data
and theory.
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Issues on PDE analysis

1. Does the PDE have any solutions?

2. What kind of ”data”do we need to specify in order to solve the PDE?

3. Are the solutions corresponding to the given data unique?

4. What are the basic qualitative properties of the solution?

5. Does the solution contain singularities? If so, what is their nature?

6. What happens if we slightly vary the data? Does the solution then also vary only
slightly?

7. What kinds of quantitative estimates can be derived for the solutions?

8. How can we define the size (i.e., ”the norm”) of a solution in way that is useful
for the problem at hand?
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Conic section analogy

Conic sections gave name to second-order linear partial differential equation categories
because of the analogy of their discriminant, i.e.:

• Conic sections can be written in their general form

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0

• The discriminant B2 − 4AC permits the classification between hyperbolic,
parabolic and elliptic conic sections:

B2 − 4AC Curve

< 0 Ellipse
= 0 Parabola
> 0 Hyperbola
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Spatial 2D Second order linear PDE Classification

Spatial 2D Second order linear partial differential equations are of great interest since
they are in the base of models in a wide range of Natural Science problems and, then,
Engineering applications.

• A general formulation of a 2nd. order linear PDE is as follows:

A∂xxf +B∂xyf + C∂yyf +D∂xf + E∂yf + Ff = 0

so, analogously (just in name!) with conic sections, these equations can be
classified as follows:

B2 − 4AC PDE Type Characteristic paths

< 0 Elliptic Complex
= 0 Parabolic Real and repeated
> 0 Hyperbolic Real and distinct
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Elliptic PDEs

• Elliptic PDE equations are closely related to
Equilibrium problems

• Their solution in each point depends on the value of
the solution function across the entire domain under
consideration. Then, its numerical solution is usually
approached by relaxation algorithms

• Example: steady heat diffusion (homogeneous
Laplacian problem)

∇2T = 0

subject to aT + bTn = c

• Laplacian operator applies as follows:
∇2T = ∆T =(∂xxT + ∂yyT )
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Parabolic PDEs: Heat equation

• Parabolic equations are initial value problems in open
domains for at least, one varible.

• They are usually related to Propagation problems (e.g.
unsteady diffusion, advection, etc.). Their numerical
solution strategy is, then, related to marching
algorithms (see finite differences scheme in the
Workshop)

• Example: unsteady heat diffusion:

Tt = α∇2T

subject to a particular initial temperature distribution
T0 = f(x, t)

10/24



Introduction problems PDE Classification Numerical solutions to PDEs Matrix formulation of PDE Stabilization Homework

Hyperbolic PDEs: Wave equation

• Hyperbolic equations are usually related to Propagation problems (e.g. wave front
spreading, oscillatory motion, etc.)

• A classical example of a hyperbolic PDE modeling a propagation problem is the
acoustic wave propagation

Ptt = a2∇2T

• Numerical solutions are also based in marching algorithms
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Phenomenological classification

The ADR equation (advection -diffusion reaccion) is a second order partial differential
equation widely used on the mathematical modeling, has importance because the
The ADR equation (advection - diffusion - reaction) is a second order partial differential
equation widely used on the mathematical modeling, has importance the phenomena
implied.

∂φ

∂t
− ~∇.k~∇(φ) + ~u.~∇(φ) + sφ = F (~x) on Ω (1)

with the boundary conditions ?? y ??:

φ(~x) = G(~x) sobre Γφ (2)

~∇(φ) = H(~x) sobre Γ∇ (3)
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Boundary Conditions

Establishing the proper boundary conditions is a strong requirement to obtain a good
model and, then, a correct, accurate solution to the problem. Among others, there are
two main boundary condition types

• Dirichlet boundary conditions

• Given a function f : ∂Ω→ R, it is required

u(x) = f(x), x ∈ ∂Ω

• Von Neumann boundary conditions: Given a function f : ∂Ω→ R, it is required

∂u(x)

∂n
= f(x), x ∈ ∂Ω

where n is the unit outward normal of ∂Ω
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On PDE Solutions

• There is no general recipe that works for all PDEs.

• It’s needed a particular analysis for each class of PDE.

• Usually, there are no explicit formulas for the solutions to the PDEs. Instead, it’s
necessary to estimate the solutions without having explicit formulas.

• A great portion of PDEs, particularly those related to real, complex physical problems,
doesn’t have an algebraic/analytic solution
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System Modeling Workshop: Heat Equation

Problem: Describe the evolution of the temperature distribution of a body (1D
rod) being heated in one of its tips

Principle: Energy conservation

Consequence: The total variation of the energetic contents within each region in
the rod [x, x+ ∆x] equals the net heat flux through the region
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Heat Equation problem statement

• Fourier’s law: heat flux q (qx for 1D) is negatively proportional to the spatial
differences for temperature

q = −K∇T

• The variation on the temperature distribution with time for a specific region is
given by the Heat Equation:

∂T (~x, t)

∂t
− α∇2T (~x, t) = 0

• For a unidimensional case, this is written as

∂T (x, t)

∂t
= α

∂2T (x, t)

∂x2

having T (x, 0) = Tamb, T (L, t) = Tamb, T (0, t) = Tflame and α = K
Cρ
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Numerical solution (1D)

• Differential equation
∂T (x, t)

∂t
= α

∂2T (x, t)

∂x2

• Using finite differences, the model equation results in

T (x, t+ ht)− T (x, t)

ht
= α

T (x+ hx, t)− 2T (x, t) + T (x− hx, t)
h2
x

• Replacing and organizing, we obtain

Tx,t+1 = Tx,t + α
∆t

(∆x)2
(Tx+1,t − 2Tx,t + Tx−1,t)

having T (x, 0) = Tamb, T (L, t) = Tamb, T (0, t) = Tflame and α = K
Cρ
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Algorithm Sketch

• Read L, K, Cρ, ∆x, ∆t

• Initialize array Tprevious[0:L ∗∆x]

• Initialize array Tcurrent[0:L ∗∆x]

• α = K
Cρ

• while ˜stop

• for i from 0 to [L ∗∆x]

• Tcurrent[i]=Tprevious[i]+α ∆t
(∆x)2

*(Tprevious[i + 1]-

2*Tprevious[i]+Tprevious[i− 1])
• Write Tcurrent

• end for

• end while
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Matrix formulation of PDE

If we have a EDP’s as above
∂T

∂t
=

K

Cp

∂2T

∂x2

We can aproximate the same equation in matrix form

∂T

∂t
=

K

Cp
[D

(2)
N ]Ti

Where [D
(2)
N ] is a second derivative matrix and Ti is a vector with the values of T

evaluated at xi points of the domain.

The trick evidently is determine [D
(2)
N ] and xi which allow the correct representation

of the function T .

The treatment of the time derivatives is like a ODE (Using a Euler or Runge Kutta
methods). In the steady state ( ∂T

∂t
= 0) the problem became in a linear algebra

system.
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More general cases

Stady state

−k
∂2u

∂x2
+ u

∂u

∂x
− g(x) = 0

−k [D
(2)
N ]uj + v [D

(1)
N ]uj = gj

(
−k [D

(2)
N ] + v [D

(1)
N ]
)
uj = gj

uj =
(
−k [D

(2)
N ] + v [D

(1)
N ]
)
\ gj

Trasient

−
∂T

∂t
− k

∂2u

∂x2
+ u

∂u

∂x
− g(x) = 0

∂T

∂t
= −k [D

(2)
N ]uj + v [D

(1)
N ]uj − gj

∂T

∂t
=
(
−k [D

(2)
N ] + v [D

(1)
N ]
)
uj − gj

Using Euler method

ut+1
j − utj
dt

=
(
−k [D

(2)
N ] + v [D

(1)
N ]
)
uj − gj

ut+1
j =

[(
−k [D

(2)
N ] + v [D

(1)
N ]
)
uj − gj

]
dt+ utj
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Spectral methods

Caracteristic Domain Spectral methods

Acotado [−1, 1] Chebyshev o Legendre
Periódico [0, 2π] ó [−π, π] Fourier
Semi-infinito [0,∞] Laguerre
Infinito [−∞,∞] Hermite

Chebyshev polynomials in [-1,1]

Trigonometric form

Tk(x) = cos(k cos−1(x))

Recursive form

Tk+1(x) = 2xTk(x)− Tk−1(x),

con T0(x) = 1 y T1(x) = x.
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Chebyshev Collocation

Nodes

xj = cos(
πj

N
), j = 0, . . . , N

Derivatives matrix

The formulation is like a matrix formulation but using the next matrix:

(DN )
(1)
jl

=



c̄j
c̄l

(−1)j+l

xj−xl
, j 6= l,

− xl
2(1−x2

l
)
, 1 ≤ j = l ≤ N − 1,

2N2+1
6

, j = l = 0,

− 2N2+1
6

, j = l = N.

(DN )
(2)
jl

=



(−1)j+l

c̄l

x2
j+xjxl−2

(1−x2
j
)(xj−xl)2

, 1 ≤ j ≤ N − 1,

−
(N2−1)(1−x2

j )+3

3(1−x2
j
)2

, 1 ≤ j = l ≤ N − 1

2
3

(−1)l

c̄l

(2N2+1)(1−xl)−6

(1+xl)
2 , j = 0, 1 ≤ l ≤ N,

2
3

(−1)l+N

c̄l

(2N2+1)(1+xl)−6

(1+xl)
2 , j = 0, 1 ≤ l ≤ N,

N4−1
15

, j = l = 0, j = l = N.
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Something about Stabilization

Equation Stability condition

∂T
∂t

= K
Cp

∂2T
∂x2

K
Cp

∆t
∆x2 ≤ 1

2

∂T
∂t

= K
Cp

(
∂2T
∂x2 + ∂2T

∂y2

)
K
Cp

∆t
∆x2+∆y2 ≤ 1

8

∂T
∂t

= c ∂T
∂x

c ∆t
∆x
≤ 1

∂T
∂t

= cx
∂T
∂x

+ cy
∂T
∂x

cx
∆t
∆x

+ cy
∆t
∆y
≤ 1

∂2T
∂t2

= c ∂
2T
∂x2 c ∆t

∆x
≤ 1
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Homework

1. Get the solution of steady state heat transfer (square plate with side equal to 1) ,
with the shown boundary conditions.

2. Now resolve again but replace the right boundary condition (T=50oC) by the
condicions qx = ∂T

∂x
= 0

3. How would be the transient solution for the last 2 cases?
4. Solve the problem proposed on file IdealFlows.pdf.
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