# Image processing: Intro

Francisco Gómez J Computer Vision MMS U. Central and UJTL

#### Image processing

An introduction to:

Reduce noise and enhace image quality

Detect features

Topics:

Gray level (Point transformations) Spatial (neighborhood) transforms

Binary image processing

## **Gray level transformations**

- Aim: to map color points to other color points:
  - S=f(r)
  - This operation is a map from a pixel value r to a target value s





#### **Example: gamma correction**



Gamma Corrections on Stained Mammalian Elastic Cartilage



I = imread('pout.tif'); % read the image imhist(I); % show the histogram imtool(I); % tool to perform constrast adjusts



Histogram equalization

The histogram is the probability distribution function of the colors in the image Equalize means flat the colors



Large number of pixels  $\rightarrow$  should be streched Small number of pixels  $\rightarrow$  should be enlarged

### **Histogram equalization**



The cummulative distribution function can be used as a mapping

I = imread('liftingbody.png'); % read image imshow(I); % show the image
[I2 T] = histeq(I); % perform the equalization
[I3] = adapthisteq(I); % apply to local neigborhoods imshow(I); % show the image



# Spatial filtering

An image f, size M x N A mask w, size m x n Sum of the products of mask coefficients with corresponding pixels under mask.

Slide the mask...



$$g(x, y) = \sum_{s=-m/2}^{m/2} \sum_{t=-n/2}^{n/2} w(s, t) f(x+s, y+t)$$
  
= w(x, y) \otimes f(x, y)

#### Example



http://eeweb.poly.edu/~yao/EE3414/image\_filtering.pdf

This filter can be used to remove noise or generate blur

# Example



**FIGURE 3.35** (a) Original image, of size  $500 \times 500$  pixels. (b)–(f) Results of smoothing with square averaging filter masks of sizes n = 3, 5, 9, 15, and 35, respectively. The black squares at the top are of sizes 3, 5, 9, 15, 25, 35, 45, and 55 pixels, respectively; their borders are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in increments of 2 points; the large letter at the top is 60 points. The vertical bars are 5 pixels wide and 100 pixels high; their separation is 20 pixels. The diameter of the circles is 25 pixels, and their borders are 15 pixels apart; their gray levels range from 0% to 100% black in increments of 20%. The background of the image is 10% black. The noisy rectangles are of size  $50 \times 120$  pixels.

```
I = zeros(100,100); % create an image with an square
I(30:70,30:70) = 1;
figure
imshow(I,[]);
w = ones(3,3)/3; % create the mask
I2 = imfilter(I,w); \% filter the image
figure
imshow(I2,[]);
w =fspecial('average', [15 15]); % create a mask
I2 = imfilter(I,w); % filter the image
figure
imshow(I2,[]);
I = I + 0.5 * rand(size(I));
figure
imshow(I,[]);
I2 = imfilter(I,w); \% filter the image
figure
imshow(I2,[]);
```

# **Gaussian filtering**

Gaussian filter works better in the frequency domain

$$h(x, y) = \frac{1}{2\pi\sigma^2} e^{-(x^2 + y^2)/(2\sigma^2)}$$



(a) a plot of Gaussian function, (b) the inverse Fourier transform of Gaussian, (c) Frequ

http://mipav.cit.nih.gov/pubwiki/index.php/Filters\_%28Frequency%29

#### . w = fspecial('gaussian',10);



Gaussian filter



#### **Convolution vs Correlation**



http://www.bores.com/courses/intro/time/2\_concor.htm

## Sharpening spatial filtering

First derivative

$$\frac{\partial f}{\partial x} \approx f(x+1) - f(x) \qquad \boxed{-1} + 1$$

-2 +1

Second derivative

$$\frac{\partial^2 f}{\partial x^2} \approx f(x+1) - 2f(x) + f(x-1)$$
<sup>+1</sup>



## Edge operators

$$G_x = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} \qquad G_y = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$



Sobel Horizontal

Sobel Vertical

Sobel Both Directions

Moon.tif

```
hx=[-101;-202;-101];
hy=hx';
```

## Image filtering



 $\nabla \mathbf{f} = \begin{bmatrix} \partial f / \partial x \\ \partial f / \partial y \end{bmatrix}$ 



Angles

 $\theta = \tan^{-1} \left( \frac{\partial f}{\partial y} \middle/ \frac{\partial f}{\partial x} \right)$ 

```
Dx = imfilter(I,hx)
Dy = imfilter(I,hy)
Compute the gradient magnitude
atan2(Dy,Dx)
colormap jet
colorbar
```

#### Excersices

Read the "coins.png" image. Show the denoised gradient angle

# **Binary image processing**

Binary images are composes by 0 (false) and 1 (true)

Tipically obtained by using thresholding operations or some feature detection process

Tipically we are interested in measure some properties



### Thresholding

Converting gray images to 0s and 1s



### **Otsu thresholding**

Find the threshold that minimize the weighted whitin-class variance

 $\sigma^2_{\text{Within}}(T) = n_B(T)\sigma^2_B(T) + n_O(T)\sigma^2_O(T)$ 

where

$$n_B(T) = \sum_{i=0}^{T-1} p(i)$$

$$n_O(T) = \sum_{i=T}^{N-1} p(i)$$

$$\sigma_B^2(T) = \text{the variance of the pixels in the background (below threshold)}$$

$$\sigma_O^2(T) = \text{the variance of the pixels in the foreground (above threshold)}$$

This quantity can be computed for all the possible thresholds

graythresh % peforms the Otsu thresholding



#### **Connected components**

A blob exists if there is a path between all the pair of points

Labeling is assigning numbers to any connected component



(b)





#### Example

How many components there are?

| 1 | 1 |   |   |   |
|---|---|---|---|---|
| 1 | 1 |   |   |   |
|   |   | 1 | 1 |   |
| 1 |   | 1 | 1 |   |
| 1 |   | 1 |   | 1 |
|   |   |   |   |   |

4-connected





**Binary image** 

bwlabel % component labeling
im2bw % perform
label2rgb
"eight.tif"
Plot the histogram
Extract the coins





# Digital Morphology: Dilation Expand Regions

$$B \oplus S = \bigcup_{b \in B} S_b$$

S<sub>b</sub> is the structuring element S, shifted to b





Sweep S over B Everywhere the origin of S touches a 1, OR S with B



# **Digital Morphology: Dilation**

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.



Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.





FIGURE 9.5 (a) Sample text of poor resolution with broken characters (magnified view). (b) Structuring element. (c) Dilation of (a) by (b). Broken segments were joined.

| 0 | 1 | 0 |
|---|---|---|
| 1 | 1 | 1 |
| 0 | 1 | 0 |

# Digital Morphology: Erosion Shirnks regions

$$B\Theta S = \{ b \mid b + s \in B, \forall s \in S \}$$

Sweep S over B

Everywhere S is completely contained in B, output a 1 at the origin of S





Sweep S over B Everywhere the origin of S touches a 1, OR S with B



'text.png'
S=strel('disk',5) % create an structural element
I2 = imdilate(I,S);
I2 = imerode(I,S);

# **Opening and closing**

Opening Erosion followed by dilation Eliminate small regions

$$B \circ S = (B \Theta S) \oplus S$$

Closing Dilation followed by erosion Fill small holes and gaps

 $B \bullet S = (B \oplus S) \Theta S$ 

Find the number of rounded objects and their number of pixels (regionprops)









#### **Region properties**

Area 
$$A = \sum_{(r,c)\in R} 1$$
  
Centroid  $\overline{r} = \frac{1}{A} \sum_{(r,c)\in R} r$ ,  $\overline{c} = \frac{1}{A} \sum_{(r,c)\in R} c$ 

Bounding box

- · The smallest rectangle containing the region
- · Can be specified by
  - The location of the upper left corner
  - The width and height

In matlab regionprops(L), L a labeled image produced by bwlabel

