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F1x1 + F2x2 ≤ F (1.43)

P1x1 + P2x2 ≤ P (1.44)

S1x1 + S2x2 → max (1.45)

Here, Equation 1.41 expresses the fact that the farmer cannot plant a negative
area, Equation 1.42 the fact that no more than the given A square kilometers of farm
land can be used, Equations 1.43 and 1.44 express the fertilizer and insecticide
limits, respectively, and Equation 1.45 is the required revenue maximization.
Taking Equations 1.41–1.45 as M, the system S as the farm land and the question
Q , ‘‘How many square kilometers should be planted with wheat versus barley to
maximize the revenue?’’, a mathematical model (S, Q , M) is obtained. For any set
of parameter values for A, F, P, . . . , the problem can again be easily solved using
Maxima. This is done in the Maxima program Farm.mac which you find in the
book software (see Appendix A). Let us look at the essential commands of this code:

1: load(simplex);
2: U:[x1>=0
3: ,x2>=0
4: ,x1+x2<=A
5: ,F1*x1+F2*x2 <=F
6: ,P1*x1+P2*x2<=P];
7: Z:S1*x1+S2*x2;
8: maximize lp(Z,U);

(1.46)

Line 1 of this code loads a package required by Maxima to solve linear program-
ming problems. Lines 2–6 define the inequalities, corresponding to Equations
1.41–1.44 above. Note that lines 2–6 together make up a single command that
stores the list of inequalities in the variable U. Line 7 defines the function Z that
is to be maximized, and the problem is then solved in line 8 using Maxima’s
maximize_lp command. Based on the parameter settings in Farm.mac, Maxima
produces the following result:

[100, [x2 = 50, x1 = 0]]

This means that a maximum revenue of 100 is obtained if the farmer plants
barley only (50 square kilometers).

1.5.6
Modeling a Black Box System

In Section 1.3 it was mentioned that the systems investigated by scientists or
engineers typically are ‘‘input–output systems’’, which means they transform the
given input parameters into output parameters. Note that the previous examples
were indeed referring to such ‘‘input–output systems’’. In the tin example, the
radius and height of the tin are input parameters and the surface area of the tin is
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Fig. 1.8 (a) System 1 with input x (N) and output y (cm).
(b) System 1 data (file spring.csv in the book software).

the output parameter. In the plant growth example, the growth rate of the plant and
its initial biomass is the input and the resulting time–biomass curve is the output
(details in Chapter 3). In the tank example, the geometrical data of the tank and the
concentration distribution are input parameters while the mass of the substance is
the output. In the linear programming examples, the areas planted with wheat or
barley are the input quantities and the resulting revenue is the output. Similarly,
all systems in the examples that will follow can be interpreted as input–output
systems.

The exploration of an example input–output system in some more detail will
now lead us to further important concepts and definitions. Assume a ‘‘system 1’’
as in Figure 1.8 which produces an output length y (centimeters) for every given
input force x [N]. Furthermore, assume that we do not know about the processes
inside the system that transform x into y, that is, let this system be a ‘‘black box’’
to us as described above. Consider the following problem:

Q : Find an input x that generates an output y = 20 cm.

This defines the question Q of the mathematical model (S, Q , M) that we are
going to define. S is the ‘‘system 1’’ in Figure 1.8a, and we are now looking for an
appropriate set of mathematical statements M that can help us to answer Q .

All that the investigator of system 1 can do is to produce some data using the
system, hoping that these data will reveal something about the processes occurring
inside the ‘‘black box’’. Assume that the data in the file spring.csv (which you find
in the PhenMod/LinReg directory of the book software, see Appendix A) have been
obtained from this system, see Figure 1.8b. To see what happens, the investigator
will probably produce a plot of the data as in Figure 1.9a. Note that the plots in
Figure 1.9 were generated using the scatter plot option of OpenOffice.org Calc (see
Appendix A on how you can obtain this software). Figure 1.9a suggests that there
is an approximately linear dependence between the x- and y-data. Mathematically,
this means that the function y = f (x) behind the data is a straight line:

f (x) = ax + b (1.47)

Now the investigator can apply a statistical method called linear regression (which
will be explained in detail in Section 2.2) to determine the coefficients a and b of
this equation from the data, which leads to the ‘‘regression line’’

f (x) = 0.33x − 0.5 (1.48)
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Fig. 1.9 (a) Plot of the data in spring.csv. (b) System 1
data with regression line. Both plots generated using Calc,
see Section 2.1.1.1.

Figure 1.9b shows that there is a good coincidence or, in statistical terminology,
a good ‘‘fit’’ between this regression line and the data. Equation 1.48 can now be
used as the M of a mathematical model of system 1. The question Q stated above
(‘‘Which system input x generates a desired output y = 20 cm? ’’) can then be easily
answered by setting y = f (x) = 20 in Equation 1.48, that is,

20 = 0.33x − 0.5 (1.49)

which gives x ≈ 62.1 N. Of course, this is just an approximate result for several
reasons. First of all, Figure 1.9 shows that there are some deviations between the
regression line and the data. These deviations may be due to measurement errors,
but they may also reflect some really existing effects. If the deviations are due to
measurement errors, then the precise location of the regression line and hence,
the prediction of x for y = 20 cm is affected by these errors. If, on the other hand,
the deviations reflect some really existing effects, then Equation 1.48 is no more
than an approximate model of the processes that transform x into y in system 1,
and hence, the prediction of x for y = 20 cm will be only approximate. Beyond this,
predictions based on data such as the data in Figure 1.8b are always approximate
for principal reasons. The y-range of these data ends at 16 cm, and system 1 may
behave entirely different for y-values beyond 16 cm which we would not be able
to see in such a data set. Therefore, the experimental validation of predictions
derived from mathematical models is always an indispensable part of the modeling
procedure (see Section 1.2). See also Chapter 2 for a deeper discussion of the quality
of predictions obtained from black box models.

The example shows the importance of statistical methods in mathematical model-
ing. First of all, statistics itself is a collection of mathematical models that can be
used to describe data or to draw inferences from data [19]. Beyond this, statistical
methods provide a necessary link between nonstatistical mathematical models and
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the real world. In mathematical modeling, one is always concerned with experi-
mental data, not only to validate model predictions, but also to develop hypotheses
about the system, which help to set up appropriate equations. In the example, the
data led us to the hypothesis that there is a linear relation between x and y. We have
used a plot of the data (Figure 1.9) and the regression method to find the coefficients
in Equation 1.48. These are methods of descriptive statistics, which can be used to
summarize or describe data. Beyond this, inferential statistics provides methods
that allow conclusions to be drawn from data in a way that accounts for randomness
and uncertainty. Some important methods of descriptive and inductive statistics
will be introduced below (Section 2.1).

Note 1.5.12 Statistical methods provide the link between mathematical models
and the real world.

The reader might say that the estimate of x above could also have been obtained
without any reference to models or computations, by a simple tuning of the input
using the real, physical system 1. We agree that there is no reason why models
should be used in situations where this can be done with little effort. In fact, we
do not want to propose any kind of a fundamentalist ‘‘mathematical modeling
and simulation’’ paradigm here. A pragmatic approach should be used, that is, any
problem in science and engineering should be treated using appropriate methods,
may this be mathematical models or a tuning of input parameters using the real
system. It is just a fact that in many cases the latter cannot be done in a simple
way. The generation of data such as in Figure 1.8 may be expensive, and thus,
an experimental tuning of x toward the desired y may be inapplicable. Or, the
investigator may be facing a very complex interaction of several input and output
parameters, which is rather the rule than the exception as explained in Section 1.1.
In such cases, the representation of a system in mathematical terms can be the
only efficient way to solve the problem.

1.6
Even More Definitions

1.6.1
Phenomenological and Mechanistic Models

The mathematical model used above to describe system 1 is called a phenomeno-
logical model since it was constructed based on experimental data only, treating the
system as a black box, that is, without using any information about the internal
processes occurring inside system 1 when x is transformed into y. On the other
hand, models that are constructed using information about the system S are called
mechanistic models, since such models are virtually based on a look into the internal
mechanics of S. Let us define this as follows [11]:
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Definition 1.6.1 (Phenomenological and mechanistic models) A mathematical
model (S, Q , M) is called
• phenomenological, if it was constructed based on experimental

data only, using no a priori information about S,
• mechanistic, if some of the statements in M are based on a priori

information about S.

Phenomenological models are also called empirical models, statistical models,
data-driven models or black box models for obvious reasons. Mechanistic models
for which all necessary information about S are available are also called white box
models. Most mechanistic models are located somewhere between the extreme
black and white box cases, that is, they are based on some information about S
while some other important information is unavailable. Such models are sometimes
called gray box models or semi-empirical models [20].

To better understand the differences between phenomenological and mechanistic
models, let us now construct an alternative mechanistic model for system 1
(Figure 1.8). Above, we have treated system 1 as a black box, that is, we have used
no information about the way in which system 1 transforms some given input x into
the output y (Figure 1.8). Let us now assume that the internal mechanics of system
1 looks as shown in Figure 1.10, that is, assume that system 1 is a mechanical
spring, x is a force acting on that spring, and y is the resulting elongation. This
is now an a priori information about system 1 in the sense of Definition 1.6.1
above, and it can be used to construct a mechanistic mathematical model based
on elementary physical knowledge. As is well known, mechanical springs can be
described by Hooke’s law, which in this case reads

x = k · y (1.50)

where k is the spring constant (newtons per centimeter), a measure of the elasticity
of the spring. The parameter k is either known (e.g. from the manufacturer of the
spring), or estimated based on data such as those in Figure 1.8. Now the following
mechanistic mathematical model (S, Q , M) is obtained:

• S: System 1
• Q : Which system input x generates a desired output of

y = 20 cm?
• M: Equation 1.50

x

x

y
y

Fig. 1.10 Internal mechanics of system 1.
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Based on this model, question Q can be answered as before by setting y = 20 cm
in the model equation (1.50), which leads to

x = k · 20 (1.51)

that is, we can answer the question Q depending on the value of the spring constant,
k. For example, assuming a value of k ≈ 3.11 N cm−1 for the spring constant, we
would get the same estimate x ≈ 62.1 N as above. The mechanistic model of system
1 has several important advantages compared to the phenomenological model, and
these advantages are characteristic advantages of the mechanistic approach. First of
all, mechanistic models generally allow better predictions of system behavior. The
phenomenological model equation (1.48) was derived from the data in Figure 1.8.
These data involve forces x between 10 and 50 N. As mentioned below in our
discussion of regression methods, this means that one can expect Equation 1.48
to be valid only close to this range of data between 10 and 50 N. The mechanistic
model equation (1.50), on the other hand, is based on the well-established physical
theory of a spring. Hence, we have good reason to expect its validity even outside
the range of our own experimental testing.

Mechanistic models do also allow better predictions of modified systems. Assume
for example that system 1 in Figure 1.10 is replaced by a system 2 that consists of
two springs. Furthermore, assume that each of these system 2 springs has the same
spring constant k as the system 1 spring. Then, in the phenomenological approach,
the model developed for system 1 would be of no use, since we would not know
about the similarity of these two systems (remember that the phenomenological
approach assumes that no details are known about the internal mechanics of the
system under consideration). This means that a new phenomenological model
would have to be developed for system 2. A new data set similar to Figure 1.8 would
be required, appropriate experiments would have to be performed, and afterwards, a
new regression line similar to Figure 1.9 would have to be derived from the data. In
the mechanistic approach, on the other hand, Hooke’s law would immediately tell
us that in the case of two springs the appropriate modification of Equation 1.50 is

x = 2k · y (1.52)

Another advantage of mechanistic models is the fact that they usually involve
physically interpretable parameters, that is, parameters which represent real properties
of the system. To wit: the numerical coefficients of the phenomenological model
equation 1.47 are just numbers which cannot be related to the system. The
parameter k of the mechanistic model equation 1.50, on the other hand, can be
related to system properties, and this is of particular importance when we want
to optimize system performance. For example, if we want smaller forces x to be
required for a given elongation y, then in the phenomenological approach we would
have to test a number of systems 2, 3, 4, . . . , until we would eventually arrive at some
system with the desired properties. That is, we would have to apply a trial-and-error
method. The mechanistic model, on the other hand, tells us exactly what we have
to do: we have to replace the system 1 spring with a spring having a smaller spring
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constant k, and this will reduce the force x required for a given elongation y. In
this simple example, it may be hard to imagine that someone would really use
the phenomenological approach instead of Hooke’s law. But the example captures
an essential difference between phenomenological and mechanistic models, and it
tells us that we should use mechanistic models if possible.

So, if mechanistic models could be set up easily in every imaginable situation, we
would not have to talk about phenomenological models here. However, in many
situations, it is not possible or feasible to use mechanistic models. As an essential
prerequisite, mechanistic models need a priori knowledge of the system. If nothing is
known about the system, then we are in the ‘‘black box’’ situation and have to apply
phenomenological models. Suppose, for example, we want to understand why
some roses wilt earlier than others (this example will be explained in more detail in
Section 2.3). Suppose we assume that this is related to the concentrations of certain
carbohydrates that can be measured. Then we cannot set up a mechanistic model as
long as we do not know all the relevant processes that connect those carbohydrate
concentrations with the observed freshness of the rose. Unless these processes
are known, all we can do is to produce some data (carbohydrate concentration
versus some appropriate measure of rose freshness) and analyze these data using
phenomenological models.

This kind of situation where little is known about the system under investigation
is rather the rule than the exception, particularly at early stages of a scientific
investigation, or at the early stages of a product development in engineering. We
may also be in a situation where we principally know enough details about the
system under investigation, but where the system is so complex that it would take
too much time and resources to setup a mechanistic model. An example is the op-
timization of the wear resistance of composite materials: Suppose that a composite
material is made of the materials M1, M2, . . . , Mn, and we want to know how the
relative proportions of these materials should be chosen in order to maximize the
composite materials resistance to wear. Then, the wear resistance of the composite
material can depend in an extremely complex way on its composition. The author
has investigated a situation of this kind where mechanistic modeling attempts
failed due to the complexity of the overall system, and where a black box-type
phenomenological neural network approach (see Section 2.5) was used instead
[21]. An important advantage of phenomenological models is that they can be used in
black box situations of this kind, and that they typically require much less time and
resources. Pragmatic considerations should decide which type of model is used in
practice. A mechanistic model will certainly be a bad choice if we need three weeks
to make it work, and if it does not give substantially better answers to our question
Q compared to a phenomenological model which can be set up within a day.

Note 1.6.1 (Phenomenological vs. mechanistic) Phenomenological models are
universally applicable, easy to set up, but limited in scope. Mechanistic models
typically involve physically interpretable parameters, allow deeper insights into
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system performance and better predictions, but they require a priori information
on the system and often need more time and resources.

1.6.2
Stationary and Instationary models

It was already mentioned above that the question Q is an important factor that
determines the appropriate mathematical model (S, Q , M). As an example, we have
considered the alternative treatment of mechanical problems with the equations of
classical or relativistic mechanics depending on the question Q that is investigated.
In the system 1 example, we have used Q : ‘‘Which system input x generates a
desired output of y = 20 cm? ’’. Let us now modify this Q in order to find other
important classes of mathematical models. Consider the following question:

Q : If a constant force x acts on the spring beginning with t = 0, what is the
resulting elongation y(t) of the spring at times t > 0?

This question cannot be answered based on the models developed above.
The phenomenological model (Equation 1.48) as well as the mechanistic model
(Equation 1.50) both refer to the so-called stationary state of system 1. This means
that the elongation y expressed by these equations represents the time-independent
(= stationary) state of the spring which is achieved after the spring has been
elongated into the state of equilibrium where the force x exactly matches the force
of the spring. On the other hand, the above question asks for the instationary (i.e.
time-dependent) development of the elongation y(t), beginning with time t = 0
when the force x is applied to the spring. To compute this y(t), an instationary
mathematical model (S, Q , M) is needed where the mathematical statements
in M involve the time t. Models of this kind can be defined based on ordinary
differential equations (details in Chapter 3). To make this important distinction
between stationary and instationary models precise, let us define

Definition 1.6.2 (Stationary/instationary models) A mathematical model (S,
Q , M) is called
• instationary, if at least one of its system parameters or state

variables depends on time and
• stationary otherwise.

1.6.3
Distributed and Lumped models

Suppose now that the spring in system 1 broke into pieces under normal operational
conditions, and that it is now attempted to construct a more robust spring. In such
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3

Mechanistic Models I: ODEs

3.1
Distinguished Role of Differential Equations

As was explained, mechanistic models use information about the internal ‘‘mechan-
ics’’ of a system (Definition 1.6.1). Referring to Figure 1.2, the main difference
between phenomenological models (discussed in Chapter 2) and mechanistic mod-
els lies in the fact that phenomenological models treat the system as a black box,
while in the mechanistic modeling procedure one virtually takes a look inside
the system and uses this information in the model. This chapter and the follow-
ing Chapter 4 treat differential equations, which is probably the most widely used
mathematical structure of mechanistic models in science and engineering. Differ-
ential equations arise naturally, for example, as mathematical models of physical
systems. Roughly speaking, differential equations are simply ‘‘equations involving
derivatives of an unknown function’’. Their distinguished role among mechanistic
models used in science and engineering can be explained by the fact that both
scientists and engineers aim at the understanding or optimization of processes
within systems.

The word ‘‘process’’ itself already indicates that a process involves a situation
where ‘‘something happens’’, that is, where some quantities of interest change
their values. Absolutely static ‘‘processes’’ where virtually ‘‘nothing happens’’ would
be hardly of any interest to scientists or engineers. Now if it is true that some
quantities of interest relating to a process under consideration change their values,
then it is also true that such a process involves rates of changes of these quantities,
which means in mathematical terms that it involves derivatives – and this is
how ‘‘equations containing derivatives of an unknown function’’ or differential
equations come into play. In many of the examples treated below it will turn out
that it is natural to use rates of changes to formulate the mathematics behind the
process, and hence to write down differential equations, while it would not have
been possible to find appropriate equations without derivatives.
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Note 3.1.1 (Distinguished role of differential equations)
1. Mechanistic models consider the processes running inside a

system.
2. Typical processes investigated in science and engineering

involve rates of changes of quantities of interest.
3. Mathematically, this translates into equations involving

derivatives of unknown functions, i.e. differential equations.

Differential equations are classified into ordinary and partial differential equations.
It is common to use ODE and PDE as abbreviations for ordinary and partial
differential equations, respectively. This section is devoted to ODEs that involve
derivatives with respect to only one variable (time in many cases), while PDEs
(treated in Chapter 4) involve derivatives with respect to more than one variable
(typically, time and/or space variables). In Section 3.2, mechanistic modeling is
introduced as some kind of ‘‘systems archaeology’’, along with some first simple
ODE examples that are used throughout this chapter. The procedure to set up ODE
models is explained in Section 3.4, and Section 3.5 provides a theoretical framework
for ODEs. Then, Sections 3.6–3.8 explain how you can solve ODEs either in closed
form (i.e. in terms of explicit formulas) or using numerical procedures on the
computer. ODE models usually need to be fitted to experimental data, that is, their
parameters need to be determined such that the deviation of the solution of the
ODE from experimental data is minimized (similar to the regression problems
discussed in Chapter 2). Appropriate methods are introduced in Section 3.9, before
a number of additional example applications are discussed in Section 3.10.

3.2
Introductory Examples

3.2.1
Archaeology Analogy

If one wants to explain what it really is that makes mechanistic modeling a very
special and exciting thing to do, then this can hardly be done better than by
the ‘‘archaeology analogy’’ of the French twentieth century philosopher Jacques
Derrida [94]:

Note 3.2.1 (Derrida’s archaeology analogy) ‘‘Imagine an explorer arrives in
a little-known region where his interest is aroused by an expanse of ruins,
with remains of walls, fragments of columns, and tablets with half-effaced
and unreadable inscriptions. He may content himself with inspecting what lies
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exposed to his view, with questioning the inhabitants (. . . ) who live in the
vicinity, about what tradition tells them of the history and meaning of these
archaeological remains, and with noting what they tell him – and he proceeds
upon his journey. But he may act differently. He may have brought picks,
shovels, and spades with him, and he may set the inhabitants to work with these
implements. Together with them he may start upon the ruins, clearing away
rubbish and, beginning from the visible remains, uncover what is buried. If his
work is crowned with success, the discoveries are self-explanatory: the ruined
walls are part of the ramparts of a palace or a treasure house; fragments of
columns can be filled out into a temple; the numerous inscriptions, which by
good luck, may be bilingual, reveal an alphabet and a language, and, when they
have been deciphered and translated, yield undreamed-of information about the
events of the remote past . . . ’’

Admittedly, one may not necessarily consider archaeology as an exciting thing to
do, particularly when it is about sitting for hours at inconvenient places, scratching
dirt from pot sherds, and so on. However, what Derrida describes is what might be
called the exciting part of archaeology: revealing secrets, uncovering the buried, and
exploring the unknown. And this is exactly what is done in mechanistic modeling.
A mechanistic modeler is what might be called a system archaeologist. Looking back
at Figure 1.2, he is someone who virtually tries to break up the solid system box
in the figure, thereby trying to uncover the hidden internal system mechanics. A
phenomenological modeler, in contrast, just walks around the system, collecting
and analyzing the data which it produces. As Derrida puts it, he contents himself
‘‘with inspecting what lies exposed to view’’.

The exploration of subsurface structures by archeologists based on ground-
penetrating radar provides a nice allegory for the procedure in mechanistic mod-
eling. In this method, the archaeologist walks along a virtual x axis, producing
scattered data along that x axis similar to a number of datasets that are inves-
tigated below. In the phenomenological approach, one would be content with
an explanation of these data in terms of the input signal sent into the soil, for
example, using appropriate methods from Chapter 2, and with no attempt toward
an understanding of the soil structures generating the data. What the archaeologist
does, however, is mechanistic modeling: based on appropriate models of the mea-
surement procedure, he gains information about subsurface structures. Magnetic
resonance imaging (MRI) and computed tomography (CT) are perhaps the most
fascinating technologies of this kind – everybody knows these fantastically detailed
pictures of the inside of the human body.

Note 3.2.2 (Objective of mechanistic modeling) Datasets contain information
about the internal mechanics of the data-generating system. Mechanistic mod-
eling means to uncover the hidden internal mechanics of a system similar to
an archaeologist, who explores subsurface structures using ground-penetrating
radar data.
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3.2.2
Body Temperature

Now let us try to become system archaeologists for ourselves, starting with simple
data sets and considerations. To begin with, suppose you do not feel so good
today and decide to measure your body temperature. Using a modern clinical
thermometer, you will have the result within a few seconds, usually indicated
by a beep signal of your thermometer. You know that your thermometer needs
these few seconds to bridge the gap between room and body temperature. Modern
clinical thermometers usually have a display where this process of adjustment
can be monitored, or better: could be monitored if you could see the display
during measurement. Be that as it may, the dataset in Figure 3.1a shows data
produced by the author using a clinical thermometer. The figure was produced
using the dataset fever.csv and the Maxima program FeverDat.mac from
the book software (see the description of the book software in Appendix A).
FeverDat.mac does two things: it reads the data from fever.csv using Maxima’s
read_nested_list command, and then it plots these data using the plot2d
command (see FeverDat.mac and Maxima’s help pages for the exact syntax of
these commands).

3.2.2.1 Phenomenological Model
Remembering what we have learned about phenomenological modeling in the
previous chapter, it is quite obvious what can be done here. The data points follow
a very simple and regular pattern, and hence it is natural to use an explicit function
T(t) describing that pattern, which can then be fitted to the data using nonlinear
regression as described in Section 2.4. Clearly, the data in Figure 3.1a describe an
essentially exponential pattern (imagine a 180◦ counterclockwise rotation of the
data). Mathematically, this pattern can be described by the function

T(t) = Tb − (Tb − T0) · e−r · t (3.1)
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Fig. 3.1 (a) Body temperature data. (b) Body temperature
data (triangles) and function T(t) from Equation 3.4.
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The parameters of this function have natural interpretations: T0 is the initial
temperature since T(0) = T0, Tb is the body temperature since limt→∞ T(t) = Tb,
and r controls the rate of temperature adjustment between T0 and Tb. As Figure 3.1a
shows, the values of T0 and Tb should be slightly above 32 and 37 ◦C, respectively.
Based on fever.csv, let us set T0 = 32.2 and Tb = 37.2. To estimate r, we
can, for example, substitute the datapoint (t = 10, T = 36.9) from fever.csv in
Equation 3.1

36.9 = 37.2 − 5 · e−r · 10 (3.2)

which leads to

r = − ln(0.06)

10
≈ 0.281 (3.3)

Note that Equation 3.3 can also be obtained using Maxima’s solve command, see
the code FeverSolve.mac in the book software. Similar to the code (1.7) discussed
in Section 1.5.2, the solve command produces several solutions here. Nine of
these solutions are complex numbers, while one of the solutions corresponds to
Equation 3.3. Using Equation 3.3, T(t) can now be written as

T(t) = 37.2 − 5 · eln(0.06)/10 · t (3.4)

Plotting this function together with the body temperature data from Figure 3.1a,
Figure 3.1b is obtained. Again, this plot was generated using Maxima: see
FeverExp.mac in the book software. As the figure shows, the function T(t) fits the
data very well. Remember our discussion of nonlinear regression in Section 2.4
where a quantity called pseudo-R2 was introduced in formula (2.35) as a measure
of the quality of fit. Here, the Maxima program FeverExp.mac computes an
pseudo-R2 value of 99.8%, indicating an almost perfect fit of the model to the data.
Comparing Equation 2.35 with its implementation in FeverExp.mac, you will note
that

∑n
i=1(yi − ŷi)2 is realized in the form (y-yprog).(y-yprog), where the ‘‘.’’

denotes the scalar product of vectors, which multiplies vectors with components
yi − ŷi in this case (see the Maxima help pages for more details on Maxima’s vector
operation syntax). Note that the parameters of the model T(t) have been obtained
here using heuristic arguments. Alternatively, they could also be estimated using
the nonlinear regression procedure described in Section 2.4.

3.2.2.2 Application
The model in Equation 3.4 can now be used to answer all kinds of questions related
to the body temperature data. For example, it could be used to estimate the variation
of the total measurement time (i.e. the time until the final measurement value is
achieved) with varying starting temperatures of the thermometer. Or, it could be
used to accelerate the measurement procedure using estimates of Tb based on the
available data, and so on. Remember our definition of mathematical models in
Section 1.4 above: a mathematical model is a set of mathematical statements that
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Fig. 3.2 (a) Alarm clock with temperature sensor. (b) Room
temperature data.

can be used to answer a question which we have related to a system. As was pointed
out there and in Note 1.2.2, the best mathematical model is the smallest and
simplest set of mathematical statements that can answer the given question. In this
sense, we can say that the phenomenological model (3.4) is the best mathematical
model of the body temperature data probably with respect to most questions that
we might have regarding the body temperature data. In Section 3.4.1, however,
we will see that Equation 3.4 can also be derived from a mechanistic modeling
approach.

3.2.3
Alarm Clock

Let us consider now a data set very similar to the body temperature data, but
with a little complication that will lead us beyond the realms of phenomenological
modeling. Suppose you enter a warm room with a temperature sensor in your hand,
and you write down the temperature output of that sensor beginning with time t = 0
corresponding to the moment when you enter the warm room. At a first glance,
this is a situation perfectly similar to the body temperature measurement, and you
would probably expect a qualitative pattern of your data similar to Figure 3.1a.
Now suppose that your data look as shown in Figure 3.2b; that is, your data are
qualitatively different from those in Figure 3.1a, showing an initial decrease in the
temperature even after you entered the warm room at time 0. Figure 3.2b has been
produced using the Maxima code RoomDat.mac and the data room.csv in the
book software (similar to FeverDat.mac discussed in Section 3.2.2).

3.2.3.1 Need for a Mechanistic Model
In principle, these data could be treated using a phenomenological model as
before. To achieve this, we would just have to find some suitable function T(t),
which exhibits the same qualitative behavior as the data shown in Figure 3.2b.
For example, a polynomial could be used for T(t) (see the polynomial regression
example in Section 2.2.6) or T(t) could be expressed as a combination of a function
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similar to Equation 3.1 with a second-order polynom. Afterwards, the parameters
of T(t) would have to be adjusted such that T(t) really matches the data, similar
to our treatment of the body temperature data. As before, the function T(t) could
then be used, for example, to estimate the total measurement time depending
on the starting temperature, and so on. However, it is obvious that any estimate
obtained in this way would be relatively uncertain as long as we do not understand
the initial decrease in the temperature in Figure 3.2b. For example, if we would
use the phenomenological model T(t) to estimate the total measurement time for
a range of starting temperatures, then we would implicitly assume a similar initial
decrease in the temperature for the entire range of starting temperatures under
consideration – but can this be assumed? We do not know unless we understand
the initial decrease in the temperature.

The initial decrease in the temperature data shown in Figure 3.2b contains
information about the system that should be used if we want to answer our
questions regarding the system with a maximum of precision. The data virtually
want to tell us something about the system, just as ground-penetrating radar
data tell the archaeologist something about subsurface structures. To construct
a phenomenological model of temperature data, only the data themselves are
required, that is, one virtually just looks at the display of the device generating
the temperature data. Now we have to change our point of view toward a look
at the data-generating device itself, and this means we shift toward mechanistic
modeling.

Note 3.2.3 (Information content of ‘‘strange effects’’) Mechanistic models
should be used particularly in situations where ‘‘strange effects’’ similar to the
alarm clock data can be observed. They provide a means to explain such effects
and to explore the information content of such data.

3.2.3.2 Applying the Modeling and Simulation Scheme
Figure 3.2a shows the device that produced the data in Figure 3.2b: an alarm
clock with temperature display. The data in Figure 3.2b were produced when
the author performed a test of the alarm clock’s temperature sensor, measuring
the temperature inside a lecture room. Initially, he was somewhat puzzled by the
decrease in the measurements after entering the warm lecture room, but of course
the explanation is simple. The alarm clock was cheap and its temperature sensor
an unhasty and lethargic one – an unbeatable time span of 30 min is required to
bridge the gap between 18 and 21 ◦C in Figure 3.2b. Before the author entered the
lecture room at time t = 0, he and the alarm clock were outdoors for some time
at an ambient temperature around 12 ◦C. The initial decrease in the temperature
measurements, thus, obviously meant that the author had disturbed the sensor
inside the alarm clock when it still tried to attain that 12 ◦C.

Now to set up a mechanistic mathematical model that can describe the pattern of
the data in Figure 3.2b, we can follow the steps of the modeling and simulation scheme
described in Note 1.2.3 (Section 1.2.2). This scheme begins with the definitions step,
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where a question to be answered or a problem to be solved is defined. Regarding
Figure 3.2b, a natural question would be

Q1: How can the initial decrease of the temperature data be explained?

Alternatively, we could start with the problem

Q2: Predict the final temperature value based on the first few data points.

In the systems analysis step of the scheme in Note 1.2.3, we have to identity those
parts of the system that are relevant for Q1 and Q2. Remember the car example in
Section 1.1, where the systems analysis step led us from the system ‘‘car’’ in its
entire complexity to a very simplified car model comprising only tank and battery
(Figure 1.1). Here, our starting point is the system ‘‘alarm clock’’ in its entire
complexity, and we need to find a simplified model of the alarm clock now in the
systems analysis step, guided by our questions Q1 and Q2. Obviously, any details of
the alarm clock not related to the temperature measurement can be skipped in our
simplified model – just as any details of the car not related to the problem ‘‘The
car is not starting’’ were skipped in the simplified model of Figure 1.1.

Undoubtedly, the temperature sensor is an indispensable ingredient of any
simplified model that is expected to answer our questions Q1 and Q2. Now
remember that we stated in Note 1.2.2 that the simplest model is the best model,
and that one, thus, should always start with the simplest imaginable model. We
have the simplest possible representation of the temperature sensor in our model
if we just consider the temperature Ts displayed by the sensor, treating the sensor’s
internal construction as a black box. Another essential ingredient of the simplified
model is the ambient temperature Ta that is to be measured by the sensor. With
these two ingredients, we arrive at the simplified alarm clock model in Figure 3.3,
which we call Model A. Note that Model A is not yet a mathematical model, but
rather what we have called a conceptual model in Section 1.2.5. Model A represents
an intermediate step that is frequently used in the development of mathematical
models. It identifies state variables Ts and Ta of the model to be developed and it
provides an approximate sketch of their relationship, with Ts being drawn inside a

Ambient temperature Ta

(b)(a)

Sensor temperature Ts

Internal temperature Tl

Ambient temperature Ta

Sensor temperature Ts

Fig. 3.3 Simplified models of the alarm clock: (a) Model A and (b) Model B.
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rectangle symbolizing the alarm clock, Ta outside that rectangle. But although we
already know the system S and the question Q of the mathematical model to be
developed, Model A is still not a complete description of a mathematical model (S,
Q , M) since mathematical statements M that could be used to compute the state
variables are missing.

3.2.3.3 Setting Up the Equations
In this case, it is better to improve Model A a little bit before going into a for-
mulation of the mathematical statements, M. Based on Model A, the only thing
that the sensor (represented by Ts) ‘‘sees’’ is the ambient air temperature. But if
this were true, then the initial decrease in the temperature data in Figure 3.2b
would be hard to explain. If the sensor ‘‘sees’’ only the ambient air temperature,
then its temperature should increase as soon as we enter the warm room at
time t = 0. The sensor obviously somehow memorizes the temperatures of the
near past, and this temperature memory must be included into our alarm clock
model if we want to reproduce the data of Figure 3.2b. Now there are several
possibilities how this temperature memory could be physically realized within
the alarm clock. First of all, the temperature memory could be a consequence of
the temperature sensor’s internal construction. As a first, simple idea one might
hypothesize that the temperature sensor always ‘‘sees’’ an old ambient temper-
ature Ta(t − tlag) instead of the actual ambient temperature Ta(t). If this were
true, the above phenomenological model for temperature adaption, Equation 3.1,
could be used as follows. First, let us write down the ambient temperature Ta for
this case

Ta(t) =
{

Ta1 t < tlag

Ta2 t ≥ tlag
(3.5)

Here, Ta1 is the ambient temperature before t = 0, that is, before we enter the
warm room. Ta2 is the ambient temperature in the warm room. Since we assume
that the temperature sensor always sees the temperature at time t − tlag instead of
the actual temperature at time t, Equation 3.5 describes the ambient temperature
as seen by the temperature sensor. In Equation 3.1, Ta(t) corresponds to the body
temperature, Tb. This means that for t < tlag we have

T1(t) = Ta1 − (Ta1 − T0) · e−r · t (3.6)

and, for t ≥ tlag

T2(t) = Ta2 − (Ta2 − T1(tlag)) · e−r · (t−tlag) (3.7)

The parameters in the last two equations have the same interpretations as above
in Equation 3.1. Note that T1(tlag) has been used as the initial temperature in
Equation 3.7 since we are shifting from T1 to T2 at time tlag, and T1(tlag) is the
actual temperature at that time. Note also that t − tlag appears in the exponent of
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Equation 3.7 to make sure that we have T2(tlag) = T1(tlag). The overall model can
now be written as

T(t) =
{

T1(t) t < tlag

T2(t) t ≥ tlag
(3.8)

3.2.3.4 Comparing Model and Data
Some of the parameters of the last equations can be estimated based on Figure 3.2b
and the corresponding data in Room.csv:

T0 ≈ 18.5 (3.9)

tlag ≈ 2.5 (3.10)

Ta2 ≈ 21 (3.11)

In principle, the remaining parameters (Ta1 and r) can now either be determined
by heuristic arguments as was done above in the context of Equation 3.1, or by
nonlinear regression methods as described in Section 2.4. However, before this
is done, it is usually efficient to see if reasonable results can be achieved using
hand-tuned parameters. In this case, a hand tuning of the remaining parameters
Ta1 and r shows that no satisfactory matching between Equation 3.8 and the data can
be achieved, and thus any further effort (e.g. nonlinear regression) would be wasted.
Figure 3.4 shows a comparison of Equation 3.8 with the data of Figure 3.2b based
on the hand-fitted values Ta1 = 16.7 and r = 0.09. The figure has been produced
using the Maxima code RoomExp.mac and the data room.csv in the book software.
Looking at RoomExp.mac, you will note that the if. . . then command is used to
implement Equation 3.8 (see Maxima’s help pages for more information on this
and other ‘‘conditional execution’’ commands).
RoomExp.mac computes a coefficient of determination R2 = 92.7%, reflecting

the fact that data and model are relatively close together. Nevertheless, the result
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Fig. 3.4 (a) Comparison of Equation 3.8 (line) with the data
of Figure 3.2b (triangles) using Ta1 = 16.7 and r = 0.09.
(b) Same picture on a different scale, showing a dissimilarity
between model and data.
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is unsatisfactory since the qualitative pattern of the model curve derived from
Equation 3.8 differs from the data. This is best seen if model and data are plotted
for t < 14 as shown in Figure 3.4b. As can be seen, there is a sharp corner in
the model curve, which is not present in the data. Also, the model curve is bent
upward for t > 3 while the data points are bent downward there. Although the
coefficient of determination is relatively high and although we might hence be able
to compute reasonable temperature predictions based on this model, the qualitative
dissimilarity of the model and the data indicates that the modeling approach based
on Equation 3.8 is wrong. As it was mentioned in Section 1.2.2, the qualitative
coincidence of a model with its data is an important criterion in the validation of
models.

3.2.3.5 Validation Fails – What Now?
We have to reject our first idea of how temperature memory could be included
into the model. Admittedly, it was a very simple idea to assume that the sensor
sees ‘‘old’’ temperatures Ta(t − tlag) shifted by a constant time tlag. One of the
reasons why this idea was worked out here is the simple fact that it led us to a
nice example of a model rejected due to its qualitative dissimilarity with the data.
Equation 3.8 also is a nice example showing that one cannot always distinguish in a
strict sense between phenomenological and mechanistic models. On the one hand,
it is based on the phenomenological model of temperature adaption, Equation 3.1.
On the other hand, Equation 3.1 has been used here in a modified form based on
our mechanistic considerations regarding the temperature memory of the system.
As was already mentioned in Section 1.5, models of this kind lying somewhere
between phenomenological and mechanistic models are also called semiempirical
or gray-box models.

Before going on, let us spend a few thoughts on what we did so far in terms of the
modeling and simulation scheme (Note 1.2.3). Basically, our systems analysis above
led us to the conclusion that our model needs some kind of temperature memory.
Equation 3.8 corresponds to the modeling step of Note 1.2.3, the simulation and
validation steps correspond to Figure 3.4. After the validation of the model failed,
we are now back in the systems analysis step. Principally, we could go now into a more
detailed study of the internal mechanics of the temperature sensor. We could, for
example, read technical descriptions of the sensor, hoping that this might lead us
on the right path. But this would probably require a considerable effort and might
result into unnecessarily sophisticated models. Before going into a more detailed
modeling of the sensor, it is better to ask if there are other, simple hypotheses that
could be used to explain the temperature memory of the system.

Remember that Note 1.2.2 says that the simplest model explaining the data is
the best model. If we find such a simple hypothesis explaining the data, then
it is the best model of our data. This holds true even if we do not know that
this hypothesis is wrong, and even if the data could be correctly explained only
based on the temperature sensor’s internal mechanics. If both the models – the
wrong model based on the simple hypothesis and a more complex model based
on the temperature sensor’s internal mechanics – explain the data equally and



128 3 Mechanistic Models I: ODEs

indistinguishably well, then we should, for all practical purposes, choose the simple
model – at least based on the data, in the absence of any other indications that it is
a wrong model.

3.2.3.6 A Different Way to Explain the Temperature Memory
Fortunately, it is easy to find another, simple hypothesis explaining the temperature
memory of the system. In contrast to our first hypothesis above (‘‘temperature
sensor sees old temperatures’’), let us now assume that the qualitative difference
between the data in the body temperature and alarm clock examples (Figures 3.1a
and 3.2b) is not a consequence of differences in the internal mechanics of the
temperature sensors, but let us assume that the temperature sensors used in both
the examples work largely the same way. If this is true, then the difference between
the data in the body temperature and alarm clock examples must be related to
differences in the construction of the clinical thermometer and the alarm clock
as a whole, namely to differences in their construction related to temperature
measurements. There is indeed an obvious difference of this kind: when the
clinical thermometer is used, the temperature sensor is in direct contact with the
body temperature that is to be measured. In the alarm clock, on the other hand,
the temperature sensor sits somewhere inside, not in direct contact with the
ambient temperature that is to be measured. This leads to the following.

Hypothesis:
The temperature memory of the alarm clock is physically realized in terms of the
temperature of its immediate surroundings inside the alarm clock, for example,
as the air temperature inside the alarm clock or as the temperature of internal
parts of the alarm clock immediately adjacent to the temperature sensor.

To formulate this idea in mathematical terms, we need one or more state
variable(s) expressing internal air temperature or the temperatures of internal parts
immediately adjacent to the temperature sensor. Now it was emphasized several
times that we should start with the simplest approaches. The simplest thing that
one can do here is to use an effective internal temperature Ti, which can be thought of
as some combination of internal air temperature and the temperature of relevant
internal parts of the alarm clock. A more detailed specification of Ti would require
a detailed investigation of the alarm clock’s internal construction, and of the way in
which internal air and internal parts’ temperatures affect the temperature sensor.
This investigation would be expensive in terms of time and resources, and it
would hardly improve the results, which is achieved below based on Ti as a largely
unspecified ‘‘black box quantity’’.

Note 3.2.4 (Effective quantities) Effective quantities expressing the cumulative
effects of several processes (such as Ti) are often used to achieve simple model
formulations.
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Introducing Ti as a new state variable in Model A, we obtain Model B as an
improved conceptual model of the alarm clock (Figure 3.3). As a next step, we now
need mathematical statements (the M of the mathematical model (S, Q , M) to be
developed) that can be used to compute the state variables. Since ODEs are required
here, we will go on with this example at the appropriate place below (Section 3.4.2).
It will turn out that Model B explains the data in Figure 3.2b very well.

3.2.3.7 Limitations of the Model
Remember that as a mechanistic modeler you are a ‘‘systems archaeologist’’,
uncovering the internal system mechanics from data similar to an archaeol-
ogist who derives subsurface structures from ground-penetrating radar data.
Precisely in this ‘‘archaeological’’ way, Figure 3.3 was derived from the data
in Figure 3.2b by our considerations above. Our starting point was given by the
data in Figure 3.2b with the puzzling initial decrease in the temperatures, an
effect that obviously ‘‘wants to tell us something’’ about internal system me-
chanics. Model B now represents a hypothesis of what the data in Figure 3.2b
might tell us about the internal mechanics of the alarm clock during temperature
measurement.

Note that Model B is a really brutal simplification of the alarm clock as a real
system (Figure 3.2a), similar to our brutal simplification of the system ‘‘car’’
in Section 1.1. In terms of Model B, nothing remains of the initial complexity
of the alarm clock except for the three temperatures Ts, Ti, and Ta. It must
be emphasized that Model B represents an hypothesis about what is going on
inside the alarm clock during temperature measurement. It may be a right or
wrong hypothesis. The only thing we can say with certainty is that Model B
probably represents the simplest hypothesis explaining the data in Figure 3.2b.
Model B may fail to explain more sophisticated temperature data produced with
the alarm clock, and such more sophisticated data might force us to go into a more
detailed consideration of the alarm clock’s internals; for example, into a detailed
investigation of the temperature sensor, or into a more detailed modeling of the
alarm clock’s internal temperatures, which Model B summarizes into one single
quantity Ti.

As long as we are concerned with the data only in Figure 3.2b, we can be
content with the rather rough and unsharp picture of the alarm clock’s internal
mechanics provided by Model B. The uncertainty remaining when mechanistic
models such as Model B are developed from data is a principal problem that
cannot be avoided. A mechanistic model represents a hypothesis about the internal
mechanics of a system, and it is well known that it is, as a matter of principle,
impossible to prove a scientific hypothesis based on data [95]. Data can be used
to show that a model is wrong, but they can never be used to prove its validity.
From a practical point of view, this is not a problem since we can be content with
a model as long as it explains the available data and can be used to solve our
problems.


