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Abstract

Modeling of 3D objects and scenes have become a
common tool in different applied fields from simulation–
based design in high–end engineering applications (avia-
tion, civil structures, engine components, etc.) to enter-
tainment (computer-based animation, video-game develop-
ment, etc.). In Biology and related fields, 3D object model-
ing and reconstruction provide valuable tools to support the
visualization, comparison and even morphometric analysis
in both academical and applied tasks.

Such computational tools, usually implemented as web-
based virtual reality applications, significantly reduce the
manipulation of fragile samples, preventing their damage
and, even, their complete loss. On the other hand, they al-
low to take the morphological properties of physical speci-
mens to the digital domain, giving support to common ento-
mology tasks such as characterization, morphological tax-
onomy and teaching. This paper addresses the problem
of producing reliable 3D point clouds from the surface of
entomological specimens, based on a proved approach for
multiview 3D reconstruction from high resolution pictures.
Given the traditional issues of macro-photography for small
sized objects (i.e. short depth of field, presence of subtle
and complex structures, etc.), a pre-processing protocol,
based on focus stacking, supported the generation of en-
hanced views obtained by an acquisition device specifically
designed for this work.

The proposed approach has been tested on a sample of
six representative subjects from the Entomological Collec-
tion of the Centro de Biosistemas, Universidad Jorge Tadeo
Lozano (Colombia). The resulting point clouds exhibit an
overall good visual quality for the body structure the se-
lected specimens, while file sizes are portable enough to
support web based visualization.

1. Introduction

Over the last few decades, computer generated 3D mod-
els have supported variety of fields such as medicine, en-
gineering, science, etc. In particular, biological applica-
tions have greatly benefited from such advanced visualiza-
tion systems, which implement valuable tools to improve
and ease human-dependent tasks s.a. annotation, characteri-
zation and modeling of biological specimens. Given the fast
evolution of the available computational power and the for-
mulation of robust yet efficient computer vision algorithms,
3D modeling from images shows itself as a cost-effective al-
ternative to sophisticated systems like laser-based 3D scan-
ning [16], Micro-Computer tomography (µ-CT)[8, 9], mi-
croscope scanning [12,15] or ultra-microscopy [5]. Indeed,
3D-reconstruction methods based on image sequences have
proved to be an affordable option with remarkable results
for textured and high quality 3D models.

Most of the state-of-art related approaches have grouped
around two methodologies: Visual Hull (VH) [18, 19] a.k.a
Shape From Silhouette (SPS) algorithm, and Multiview
Stereo (MVS) [23]. While VH is a common option to ad-
dress 3D reconstruction due to its easy implementation [3],
it does not take into account color nor texture content of the
object, rather than its silhouette, making it prone to errors
when occlusions or concave regions are present [14]. On
the other hand, multiview stereo uses a measure of photo-
consistency, based on the image texture or color content,
exhibiting pretty good results even using fewer views of the
object than standard VH approaches [14]. Nevertheless, VH
methods are still frequently used to initialize MVS imple-
mentations, since they are usually robust to outliers [6, 10].

Recent works in this field have applied several differ-
ent multiview approaches to perform 3D reconstruction on
moderate–sized images (1–4 megapixels) [10, 14, 16, 17],
since they apply highly demanding techniques in terms of
computational cost and memory requirements, s.a. surface
or volumetric optimization or VH constraints, not suitable
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for larger images. Given that, the main goal of this work
is to propose a systematic method to generate reliable and
dense point clouds representing the surface of preserved en-
tomological samples based on multiple high-resolution im-
ages. Such virtual representations of physical specimens
could support time–consuming human–driven tasks like
characterization, morphological exploration, morphometry
and certain aspects of morphological taxonomy in a non-
destructive approach. This scenario implies the implemen-
tation of a MVS 3D surface reconstruction method for small
sized objects, addressing the presence of insect complex
and subtle structures –antennas, wings, legs, etc.–, con-
cave surfaces and reflective exoskeleton regions [21]. How-
ever, macro-photography involves issues like short depth of
field, which demands post-acquisition techniques like Fo-
cus Stacking [4], in order to produce high quality textured
images able to provide good enough results via MVS meth-
ods. To address this requirement, an automated tool and
a image acquisition protocol similar to those described by
Nguyen et.al. [21] and Gallo et.al.[11]. Once full im-
age sequence is obtained, a computational algorithm based
on Tola et.al.[25] approach was implemented to get dense
pointclouds ready to be rendered into a realistic 3D model
of a entomological specimen.

2. Materials and Methods

The method proposed in this work comprises three main
stages: i) an automated image acquisition protocol to
capture high resolution images of a subject from differ-
ent points of view; ii) a post-processing method involv-
ing Focus Stacking and Background Suppression to obtain
full calibrated image sequences; and iii) a computational
method based on a MVS approach suited for high resolu-
tion images is implemented to get realistic point clouds.

2.1. Multiview image acquisition

For image acquisition and 3D reconstruction, a repre-
sentative subset of subjects from the Entomological Collec-
tion of the Centro de Biosistemas1 were selected according
to these criteria: i) Well preserved specimens of different
orders with no damage on its external structure and able
to hold its original shape during manipulation in the im-
age acquisition process. ii) Every sample must to fit into
1.5 × 2.5 × 2.5 cm box to avoid out-of-view issues when
taking photographs. iii) Every sample must be attached to a
metallic pin to hold straight alignment while were gripped
by the acquisition device. Using these criteria, a group of 6
different specimens were selected.

1Part of the Universidad Jorge Tadeo Lozano (Colombia), located in
the town of Chia (26 km to the north of Bogotá). The complete collection
comprises more than 10,000 subjects, including samples of different orders
(e.g. Coleoptera, Hymenoptera, Diptera, Lepidotera, etc.)

Figure 1. Image acquisition device.

2.1.1 Acquisition device and protocol

Based on the automated acquisition protocol described by
Nguyen et.al. [21][20] we performed a similar approach
for image acquisition from uniformly spaced points of view
(POV) (all pictures were taken at the same distance from
subject and equally spaced from each other). To acquire
such uniform image sequence, a specific device was de-
signed in the Universidad Central (Colombia) to support
this application. This device consists of two stepper mo-
tors, a Canon EOS 70D digital camera with a Canon EF-
65 mm macro lens and a manually adjustable rail with a
micrometric screw (Figure 1).

The stepper motors provide two angles of freedom (tilt
and pan) and allow to rotate the subject in a wide range of
angular positions. A full sequence of images is obtained
as follows: The first stepper motor performs tilt movement
and turns the subject in three specific elevation angles :
−45◦, 0◦ and 45◦ respectively as shown in Figure 3 (a);
the points of view induced for such movement correspond
to those shown in (b). For each elevation angle, the sec-
ond motor performs a pan movement and rotates the subject
360◦automatically shooting the camera every 18◦as shown
in (c); the points of view induced here correspond to those
shown in (d). Combining both movements, this device is
able to take 20×3 = 60 photographs producing an uniform
point of view pattern (Fig. 4).

Figure 2. Two entomological samples used to evaluate the pro-
posed method: Diptera (fly, left) and Hymenoptera (Wasp, right).
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Figure 3. Illustration of image acquisition protocol. Tilt movement makes a rotation of the specimen within in the median plane for three
different angle positions: 45◦, 0◦and -45◦(a) generating different visual orientations for picture acquisition: above, inline and below the
subject respectively (b). The pan movement turns the specimen 360◦in the frontal plane (c) allowing to take pictures of subject from variety
of angles around it(d).

Despite the multiple POV achieved by the device can
cover almost every detail from the specimen, the short depth
of field of the Canon macro lens (as well as other macro
lenses) focus only a thin area of the subject at each POV.
Since EF-65 lens has a fixed focal length, the camera must
be displaced along the direction of specimen to focus differ-
ent sections. The rail then provides a third degree of free-
dom by moving the camera along in the axial direction at
micrometric steps. Then, a complete sequence of 60 photos
is carried out by the two stepper motors and automatic re-
mote camera shooter; when whole sequence is completed,
camera is shifted 1 mm in the direction of subject and a
new sequence of 60 photos is acquired. This process is re-
peated until camera focus reach the most rear section of
subject, so for a insect of 15 mm long, device has to take
15 × 3 × 20 = 900 photos to retrieve all texture and color
information of specimen
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Figure 4. Point of view pattern used by the image acquisition pro-
tocol (Figure 3). Diamonds show each camera position while blue
dotted lines represent the camera orientation as it faces the rota-
tion center of the acquisition device (corresponding to the subject
centroid).

2.1.2 Camera calibration

To approximate the 3D shape of an object given a set of 2D
pictures, it is necessary to know how the 3D object is pro-
jected into a 2D space for each one of those images using
central projection [13], which is a linear transformation in
homogeneous coordinates between a 3D point in the real
world, X , and a 2D point projected on each picture, x –
Eq. (1). The 3 coordinates of X are then projected into the
two components of x through a matrix projection, P . This
projection matrix contains information about the geomet-
ric model of the camera and how it is oriented with respect
to the real world. The z and Z are the additional compo-
nents in the homogeneous coordinate representation of X ,
x points, and allow to find their original Cartesian represen-
tation.

[x1, x2, z]
T = P3×4[X1, X2, X3, Z]

T (1)

Equation (2) shows how projection matrix (a.k.a funda-
mental matrix) can be decomposed into 3 separated com-
ponents: a set of intrinsic parameters K related to the geo-
metric pinhole camera model representation, a rotation ma-
trix R that defines the change from real–world coordinates
to camera coordinates along with the orientation of camera
with respect to scene, and a translation vector t = −RC de-
scribing the translation of camera center around the subject
given the camera center coordinates C.

P3×4 = K3×3[R3×3|t3×1] (2)

Knowing the projection matrix P is crucial to infer 3D
points locations from different sets of two-dimensional pro-
jected points, however, the estimation of this matrix is not
trivial and is known as the pose estimation problem that nor-
mally requires third-party optimization algorithms as well
as a pattern calibration image [24]. Nonetheless, given the
accurate movement of stepper motors in conjunction with
the Canon camera and lens specifications we are able to pro-
vide a good a priori estimation of such parameters based on
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the formulation for each component of P given by the fol-
lowing set of formulas in Equation (3).

R = Rwc

1 0 0
0 cos(φ) −sin(φ)
0 sin(φ) cosφ

 cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1

 (3)

K =

f/µ 0 px/2
0 f/µ py/2
0 0 1

 t = −R

d
cos(φ)cos(θ)cos(φ)sin(θ)

sin(φ)



R rotation matrix is considered as an extrinsic parame-
ter that takes the tilt and pan angles, φ and θ respectively,
to calculate the full orientation of camera in camera coordi-
nates, hence a 3 × 3 transformation matrix Rwc is required
to convert from world to camera coordinate system. An-
other extrinsic parameter is the translation vector t that is
calculated based on the value of same tilt and pan angles, φ
and θ, and the focus distance from subject d. Finally, the in-
trinsic parameters about the camera–lens geometric model
are included in K based on values of focal length f , pixel
size µ and resolution in pixels (px, py), (Skew and distor-
tion factors were considered negligible for the camera and
lens selected). For all points of view in Figure 4, the same
configuration of K is used, in contrast of the value of t and
R that vary depending on the actual values of φ and θ.

2.2. Image pre–processing

Section 2.1. describes the image acquisition process to
capture multiview texture and color data from uniform pic-
ture sequences of an entomological specimen. Due to the
tight depth-of-field associated to macro lenses, the acquisi-
tion device should provide a mechanism to obtain several
partially–focused pictures for each POV, in order to imple-
ment a Focus Stacking algorithm yielding a fully–focused
image. Additionally a background suppression process is
applied to remove irrelevant points for 3D reconstruction,
reducing the computation time.

2.2.1 Focus Stacking

Focus stacking [4] is an image processing technique com-
bining multiple pictures taken at different focus distances
to obtain a synthetic image with greater depth-of-field than
any of the individual source pictures [22], commonly find
in macro photography and optical microscopy applications.

For this particular application, all images for the same
point of view are combined using a focus stacking tool in-
cluded by Adobe Photoshop software. Number of photos to
combine may vary depending on the size of specimen, for
example, a 15mm insect requires 15 photos every millime-
ter to cover all individual sections. However, regardless of
the size of insect, the FS process yields an unique image
per point of view; so for a whole full image acquisition se-
quence FS returns a reduced image collection of 3×20 = 60

pictures. Figure 2 shows the results of FS for the same point
of view in two different samples.

2.2.2 Background suppression

As explained in section 2.3, MVS algorithms perform a per
pixel measure of photoconsistency on different pairs of im-
ages to estimate the location of a real 3D point through
stereoscopy. Even though, it is not necessary to perform
such measure on pixels that do not correspond with the sub-
ject of interest (i.e. entomological specimen) but belong to
background region.

To reduce the computational cost of MVS implementa-
tion, a binary mask was created per image selecting the Re-
gion of Interest (ROI) corresponding to insect body where
the true logical values correspond to pixels being measured
for photoconsistency while negative values belongs to back-
ground and are not considered into MVS algorithm.

The actual impact of background suppression process
becomes noticeable when dealing with small subjects since
most of image turns into background reducing the time of
computation in a factor of 2 to 8 depending of the size of
the specimen. Additionally, binary masks are later used to
make a cleaning operation of outliers in pointclouds since
they resemble the silhouettes of subject and can be used to
run a VH fashion post-processing stage in a similar to previ-
ous approaches for 3D reconstruction from images[3,6,10].

2.3. Multiview–based 3D reconstruction

A novel proposal carried out by Tola et.al [25] describes
an MVS approach designed to work with ultra-high resolu-
tion images with an efficient cost of memory and computa-
tional time. The core of this approach is a robust photocon-
sistency measure between images based on DAISY descrip-
tors[7]. DAISY are able to capture high texture content of
large resolution images with relative low memory and com-
putational cost requirements bringing reliable matches for
dense 3D pointclouds generation avoiding the use of poste-
rior optimization constraints.

Tola et.al. reported results motivated the implementation
of a similar approximation for this work about 3D recon-
struction of entomological specimens based on high resolu-
tion and textured images provided by our acquisition tool.
Our proposed method can be divided in the following sec-
tions: Photoconsistency measures based on DAISY descrip-
tors, photoconsistency enforcement via multiple views, and
use of binary masks to perform VH fashion post-processing
for outlier suppression.

2.3.1 Photoconsistency measure

The core of every MVS implementation is the photocon-
sistency measure because allow depth estimation of single
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Algorithm 1 3D point estimation algorithm
Input: Image pair (Ii, Ij)
Input: Ii 2D point at m,n coordinates (xim,n)
Input: POV fundamental matrices Pi, Pj

Input: Depth along epipolar line (λ)
Input: Depth step along epipolar line (dλ)
Input: Ij image resolution (umax, vmax)
Output: 3D point location for xim,n (Xi,j

m,n)
1: procedure COMPUTE3D(Ii,Ij ,xim,n,Pi,Pj)
2: di = computeDaisy(Ii,xim,n)
3: xju,v = epipolarProjection(Ij ,xim,n,Pi,Pj ,λ)
4: while u < umax and v < vmax do
5: dj = computeDaisy(Ij ,xju,v)
6: D = append(D,dj ,xju,v)
7: λ = λ+ dλ
8: xju,v = epipolarProjection(Ij ,xim,n,Pi,Pj ,λ)
9: end while

10: r = bestScoreRatio(di,D)
11: if r > 1.25 then
12: xju,v = bestScorePoint(d,D)
13: end if
14: Xi,i−1

m,n = project3D(xim,n,xju,v ,Pi,Pj)
15: return Xi,j

m,n

16: end procedure

points x given a pair of images through stereoscopy. A ro-
bust and computationally efficient photoconsistency estima-
tion facilitates the implementation of an efficient 3D recon-
struction algorithm in a moderate time for large sequences
of images.

Current approach implements photoconsistency based
on DAISY descriptors and is presented in Algorithm 1.
Given a pair of images Ii, Ij and one (m,n) 2D point in
image Ii i.e. xim,n, a DAISY descriptor di is calculated for
that point (computeDaisy). Then the most photoconsistent
point in image Ij must be found to give actual 3D position
through stereoscopy. Usually, finding that point requires
O(n2) computation time since images are two-dimensional,
however epipolar geometry reduces this problem to a linear
search given the calibration matrices Pi, Pj . The calcula-
tion of the epipolar line (epipolarProjection) can be con-
sulted in the Tola et.al work [25] in the Appendix.

For every point xim,n a number of samples are projected
onto the epipolar line by changing the value of depth λ
along the line in small steps of dλ. Every sample generates
a 2D point positioned at u, v in image Ij called xju,v , for
each sample algorithm calculates its DAISY descriptor dj
and is appended into an array D along with the position of
xiu,v (append). Then a score function –equation 4– is used
between di and each one of samples on D to determine the
most photoconsistent point.

S(d) = e−
||di−dj ||

2

σ (4)

Where di and dj are the DAISY descriptors of point
xim,n and sampled points xju,v onto the epipolar line, the
σ coefficient controls the sharpness of the distribution pe-
nalizing or not high differences between descriptors. Score
function is used to estimate the most photoconsistent pair
of points, however an additional constraint is taking into
account to assure the validity of selected pair. The con-
straint is that if the ratio between first and second best score
is greater that 1.25 then it can be trusted that selected pair is
valid (bestScoreRatio), if not is deprecated.

Finally, if the score function ratio finds a valid pair
of points, xju,v is assigned with the most photoconsis-
tent sample of D (bestScoreRatioIndex). Then both points
xim,n, x

j
u,v in conjunction with calibration matrices Pi, Pj

are used to estimate actual 3D location Xi,j
m,n from images

Ii, Ij(project3D), as it is shown in [25].

2.3.2 Enforcing consistency

An important observation about photoconsistency is that is
performed using pairs of images, however it is possible to
exploit information of additional views to refine obtained
3D points for each single image Ii e.g. the method de-
scribed in Algorithm 2. This refining process takes the
obtained 3D point through two subsequent images Xi,i−1

m,n

and compares its relative error (consistencyError) against
the same calculation of 3D point but using different pairs of
images Xi,j

m,n for j = {i − 2, i + 1, i + 2} assuming that
selected 2D point xim,n can be viewed for all selected pairs.

Relative error e is calculated using the depth along the
epipolar line λ for different combinations of 3D points
{(Xi,i−1

m,n , Xi,i−2
m,n ), (Xi,i−1

m,n , Xi,i+1
m,n ), (Xi,i−1

m,n ), Xi,i+2
m,n )}.

If this error is lower than 5%, then such pair is considered
consistent and C is incremented. Finally, only the points
Xi are preserved, such that all pair combinations are
consistent i.e. C = 3

2.3.3 Outlier supression through binary masks

Both previous processes allow the calculation and enforce-
ment of 3D points arrays Xi for an unique image Ii. The
complete point cloud is generated by appending the entire
group of 60 arrays into a large array of points called X .
However, final pointcloud may present some outliers. Thus,
we proposed the use of binary masks to perform a refining
process based on silhouettes that performs a similar work
to visual hull method but are much more cost-efficient in
computational terms.

A final cleanup of the point cloud X projects the whole
array, using Equation 1, on every binary mask Bi, remind
that binary masks have true values for those point in ROI
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Algorithm 2 Consistency enforcement algorithm
Input: Image (Ii)
Input: Ii 2D point at m,n coordinates (xim,n)
Input: POV fundamental matrix Pi

Input: Ii image resolution (mmax, nmax)
Output: 3D estimation of all ROI points in image Ii (Xi)

1: procedure ENFORCECONSISTENCY(Ii,Pi)
2:
3: C = 0 . consistent view counter
4: e = 0 . consistency error
5: for m=0 to mmax do
6: for n=0 to nmax do
7: Xi,i−1

m,n = compute3D(Ii,Ii−1,xim,n,Pi,Pi−1)
8: for j in i− 2, i+ 1, i+ 2 do
9: Xi,j

m,n = compute3D(Ii,Ij ,xim,n,Pi,Pj)
10: e = consistencyError(Xi,i−1

m,n ,Xi,j
m,n)

11: if e < 0.05 then
12: C = C + 1
13: end if
14: end for
15: if C = 3 then
16: Xi

m,n = Xi,i−1
m,n

17: Xi = append(Xi, Xi
m,n)

18: end if
19: end for
20: end for
21: return Xi

22: end procedure

and false for those in the background. If reprojected points
fall into ROI for all masks is preserved into the final point
cloud as described in Equation 5, otherwise are eliminated.

X =
{
Xi : ∀xi = PiX

i, xi ∈ ROI(Bi)
}

(5)

3. Results
To evaluate the quality of 3D models obtained by the

proposed approach in a real scenario, two representative
physical samples were selected, corresponding to Diptera
and Hymenoptera (Figure 2). For each specimen, an image
sequence of 60 photos from different angles was acquired,
according to the acquisition protocol. However, the number
of FS pictures per POV varied from 10 for the fly (∼ 1.0 cm
long) to 18 for the wasp (∼ 1.8 cm long), yielding a total
of 10 × 3 × 20 = 600 and 18 × 3 × 20 = 1080 photos,
respectively. All pictures were shot at a resolution of 5MP
(2736 × 1824 pixels) with an average file size of 1.2 MB.
The entire collection size is approximately 72 MB after the
Focus Stacking process. Resulting point clouds can be ob-
served in Figure 5 and correspond to dense sets of around 1
million points for a fly and 2.4 millions for wasp. The re-
sulting point clouds are available via Web in [1,2], showing

that realistic 3D reconstruction for such complex and small
sized objects is possible using low–cost acquisition tools
(based on digital cameras and macro lenses) in comparison
to laser scanners and optical microscopes.

The point clouds obtained by applying the proposed
method to the selected samples are shown in Figure 5).
Even they evidence an acceptable and promising perfor-
mance, there are several drawbacks like incomplete regions
in wings and legs. We attribute those problems to the au-
tomated background suppression process since wings are
translucent and take a similar color to background panel ,
particularly on the green wings of wasp. On the other hand,
incomplete legs may be caused due to slight inconsisten-
cies between a priori calibration parameters given by 3 and
actual positions of the acquisition tool.

Respect to the computational cost, a sequence of 60 pho-
tographs was used for each sample to perform 3D recon-
struction of specimens, all photographs were taken with
resolution of 5MP (2736 × 1824 pixels). 3D reconstruc-
tion algorithm was implemented and executed in MATLAB
R2012a on a 2.4 GHz 16-cores Intel Xeon CPU and 16 GB
RAM server running Linux Ubuntu 12.04 LTS. Despite the
large computational capacity provided by the server, the al-
gorithm only used 1 core for each POV combination (4 in
total). Additionally, MATLAB is an interpreted language
which performs 10 to 100 times slower (in particular for
nested loops) in comparison with compiled programming
languages e.g. C++. Given that, the 3D reconstruction pro-
cess takes ∼ 4 hours for the Diptera specimen and ∼ 10
hours for the Hymenoptera specimen.

4. Conclusions and future work

This work proposes a complete implementation of a
framework intended to support 3D model reconstruction
from high-resolution image sequences applied to the dig-
itization of entomological specimens consisting in two
main stages: an image acquisition protocol (that integrates
macro-photography and Focus Stacking to produce high
resolution textured images, based on the work of Nguyen
et.al.[21]), and a multiview 3D reconstruction algorithm
(based on the work of Tola et.al.) [25], providing 3D dense
and realistic point clouds from multiview sequences of high
resolution images.

After visual inspection, the results obtained by this
method are good enough for a preliminary version. In-
coming stages of the development include corrections for
background suppression process and camera parameter cal-
ibration to avoid incomplete regions in final point clouds.
Moving the code to compiled programming languages and
improving the algorithm so it can be optimized and paral-
lelized are also under consideration, in order to use stricter
parameters in much shorter times.
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Figure 5. Obtained point clouds for two specimens of entomological collection. A fly (top) and a wasp (bottom)
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