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into Eq. (2.7)). Hence, we have lost only 0.43 percent of the potential maximum
profit by applying the results of our model, even though our actual production
levels were quite a way off from the optimum values. Our model appears to be
extremely robust in this regard. Furthermore, a similar conclusion should hold
for many similar problems, since it is basically due to the fact that ∇f = 0 at
a critical point.

All of the previous sensitivity analysis calculations could also be performed
using a computer algebra system. In fact, this is the preferred method, assuming
that one is available. Figure 2.8 illustrates how the computer algebra system
Maple can be used to compute the sensitivity S(x1, a). The calculations of the
other sensitivities are similar.

Sensitivity analysis for the other elasticities could be carried out in the same
manner. While the particulars will differ, the form of the function f suggests
that each affects y in essentially the same manner. In particular, we have a high
degree of confidence that our model will lead to a good (nearly optimal) decision
about production levels even in the presence of small errors in the estimation
of price elasticities.

We will say just a few words on the more general subject of robustness. Our
model is based on a linear price structure. Certainly, this is only an approxima-
tion. However, in practical applications we are likely to proceed as follows. We
begin with an educated guess about the size of the market for our new products
and with a reasonable average sale price. Then we estimate elasticities either
on the basis of past experience with similar situations or on the basis of limited
marketing studies. We should be able to get reasonable estimates for these elas-
ticities over a certain range of sales levels. This range presumably includes the
optimal levels. So in effect we are simply making a linear approximation of a
nonlinear function over a fairly small region. This sort of approximation is well
known to exhibit robustness. After all, this is the whole idea behind calculus.

2.2 Lagrange Multipliers

In this section we begin to consider optimization problems with a more so-
phisticated structure. As we noted at the beginning of the previous section,
complications arise in the solution of multivariable optimization models when
the set over which we optimize becomes more complex. In real problems we are
led to consider these more complicated models by the existence of constraints
on the independent variables.

Example 2.2. We reconsider the color TV problem (Example 2.1) introduced
in the previous section. There we assumed that the company has the potential
to produce any number of TV sets per year. Now we will introduce constraints
based on the available production capacity. Consideration of these two new
products came about because the company plans to discontinue manufacture of
some older models, thus providing excess capacity at its assembly plant. This
excess capacity could be used to increase production of other existing product
lines, but the company feels that the new products will be more profitable. It
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Variables: s = number of 19–inch sets sold (per year)
t = number of 21–inch sets sold (per year)
p = selling price for a 19–inch set ($)
q = selling price for a 21–inch set ($)
C = cost of manufacturing sets ($/year)
R = revenue from the sale of sets ($/year)
P = profit from the sale of sets ($/year)

Assumptions: p = 339− 0.01s− 0.003t
q = 399− 0.004s− 0.01t
R = ps+ qt
C = 400, 000 + 195s+ 225t
P = R− C
s ≤ 5000
t ≤ 8000
s+ t ≤ 10, 000
s ≥ 0
t ≥ 0

Objective: Maximize P

Figure 2.9: Results of step 1 for the color TV problem with constraints.

is estimated that the available production capacity will be sufficient to produce
10,000 sets per year (≈ 200 per week). The company has an ample supply of
19–inch and 21–inch LCD panels and other standard components; however, the
circuit boards necessary for constructing the sets are currently in short supply.
Also, the 19–inch TV requires a different board than the 21–inch model because
of the internal configuration, which cannot be changed without a major redesign,
which the company is not prepared to undertake at this time. The supplier is
able to supply 8,000 boards per year for the 21–inch model and 5,000 boards per
year for the 19–inch model. Taking this information into account, how should
the company set production levels?

Once again we will employ the five-step method. The results of step 1 are
shown in Figure 2.9. The only change is the addition of several constraints on
the decision variables s and t. Step 2 is to select the modeling approach.

This problem will be modeled as a multivariable constrained optimization
problem and solved using the method of Lagrange multipliers.

We are given a function y = f(x1, . . . , xn) and a set of con-
straints. For the moment we will assume that these constraints can
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be expressed in the form of k functional equations

g1(x1, . . . , xn) = c1

g2(x1, . . . , xn) = c2

...

gk(x1, . . . , xn) = ck.

Later on we will explain how to handle inequality constraints. Our
job is to optimize

y = f(x1, . . . , xn)

over the set

S = {(x1, . . . , xn) : gi(x1, . . . , xn) = ci for all i = 1, . . . , k}.

There is a theorem that states that at an extreme point x ∈ S,
we must have

∇f = λ1∇g1 + · · ·+ λk∇gk.

We call λ1, . . . , λk the Lagrange multipliers. This theorem assumes
that ∇g1, . . . , ∇gk are linearly independent vectors (see Edwards
(1973), p. 113). Then in order to locate the max–min points of f on
the set S, we must solve the n Lagrange multiplier equations

∂f

∂x1

= λ1

∂g1
∂x1

+ · · ·+ λk

∂gk
∂x1

...

∂f

∂xn

= λ1

∂g1
∂xn

+ · · ·+ λk

∂gk
∂xn

together with the k constraint equations

g1(x1, . . . , xn) = c1

...

gk(x1, . . . , xn) = ck

for the variables x1, . . . , xn and λ1, . . . , λk. We must also check
any exceptional points at which the gradient vectors ∇g1, . . . , ∇gk
are not linearly independent.

The method of Lagrange multipliers is based on a geometrical
interpretation of the gradient vector. Suppose for the moment that
there is only one constraint equation,

g(x1, . . . , xn) = c,
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so that the Lagrange multiplier equation becomes

∇f = λ∇g.

The set g = c is a curved surface of dimension n− 1 in R
n, and for

any point x ∈ S the gradient vector ∇g(x) is perpendicular to S at
that point. The gradient vector ∇f always points in the direction in
which f increases the fastest. At a local max or min, the direction
in which f increases fastest must also be perpendicular to S, so at
that point we must have ∇f and ∇g pointing along the same line;
i.e., ∇f = λ∇g.

In the case of several constraints, the geometrical argument is
similar. Now the set S represents the intersection of the k level
surfaces g1 = c1, . . . , gk = ck. Each one of these is an (n − 1)–
dimensional subset of Rn, so their intersection is an (n− k)–dimen-
sional subset. At an extreme point, ∇f must be perpendicular to
the set S. Therefore it must lie in the space spanned by the k
vectors ∇g1, . . . , ∇gk. The technical condition of linear indepen-
dence ensures that the k vectors ∇g1, . . . , ∇gk actually do span a
k–dimensional space. (In the case of a single constraint, linear inde-
pendence simply means that ∇g ̸= 0.)

Example 2.3. Maximize x+2y+3z over the set x2 + y2 + z2 = 3.

This is a constrained multivariable optimization problem. Let

f(x, y, z) = x+ 2y + 3z

denote the objective function, and let

g(x, y, z) = x2 + y2 + z2

denote the constraint function. Compute

∇f = (1, 2, 3)

∇g = (2x, 2y, 2z).

At the maximum, ∇f = λ∇g; in other words,

1 = 2xλ

2 = 2yλ

3 = 2zλ.

This gives three equations in four unknowns. Solving in terms of λ,
we obtain

x = 1/2λ

y = 1/λ

z = 3/2λ.
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Using the fact that
x2 + y2 + z2 = 3,

we obtain a quadratic equation in λ, with two real roots. The root
λ =

√
42/6 leads to

x =
1

2λ
=

√
42

14

y =
1

λ
=

√
42

7

z =
3

2λ
=

3
√
42

14
,

so that the point

a =

(√
42

14
,

√
42

7
,
3
√
42

14

)

is one candidate for the maximum. The other root, λ = −
√
42/6,

leads to another candidate, b = −a. Since ∇g ̸= 0 everywhere on
the constraint set g = 3, a and b are the only two candidates for
the maximum. Since f is a continuous function on the closed and
bounded set g = 3, f must attain its maximum and minimum on
this set. Then, since

f(a) =
√
42, and f(b) = −

√
42,

the point a is the maximum and b is the minimum. Consider the
geometry of this example. The constraint set S defined by the equa-
tion

x2 + y2 + z2 = 3

is a sphere of radius
√
3 centered at the origin in R

3. Level sets of
the objective function

f(x, y, z) = x+ 2y + 3z

are planes in R3. The points a and b are the only two points on
the sphere S at which one of these planes is tangent to the sphere.
At the maximum point a, the gradient vectors ∇f and ∇g point in
the same direction. At the minimum point b, ∇f and ∇g point in
opposite directions.

Example 2.4. Maximize x+ 2y + 3z over the set x2 + y2 + z2 = 3
and x =1.

The objective function is

f(x, y, z) = x+ 2y + 3z,
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so
∇f = (1, 2, 3).

The constraint functions are

g1(x, y, z) = x2 + y2 + z2

g2(x, y, z) = x.

Compute

∇g1 = (2x, 2y, 2z)

∇g2 = (1, 0, 0).

Then the Lagrange multiplier formula ∇f = λ1∇g1 + λ2∇g2 yields

1 = 2xλ1 + λ2

2 = 2yλ1

3 = 2zλ1.

Solving for x, y, and z in terms of λ1 and λ2 gives

x =
1− λ2

2λ1

y =
2

2λ1

z =
3

2λ1

.

Substituting into the constraint equation x = 1 gives λ2 = 1− 2λ1.
Substituting all of this into the remaining equation

x2 + y2 + z2 = 3

yields a quadratic equation in λ1, which gives λ1 = ±
√
26/4. Substi-

tuting back into the equations for x, y, and z yields the two following
solutions:

c =

(

1,
2
√
26

13
,
3
√
26

13

)

d =

(

1,
−2

√
26

13
,
−3

√
26

13

)

.

Since the two gradient vectors ∇g1 and ∇g2 are linearly independent
everywhere on the constraint set, the points c and d are the only
candidates for a maximum. Since f must attain its maximum on this
closed and bounded set, we need only evaluate f at each candidate
point to find the maximum. The maximum is

f(c) = 1 +
√
26,
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and the point d is the location of the minimum. The constraint set
S in this example is a circle in R

3 formed by the intersection of the
sphere

x2 + y2 + z2 = 3

and the plane x = 1. As before, the level sets of the function f are
planes in R

3. At the points c and d these planes are tangent to the
circle S.

Inequality constraints can be handled by a combination of the
Lagrange multiplier technique and the techniques for unconstrained
problems. Suppose that the problem in Example 2.4 is altered by
replacing the x = 1 constraint with the inequality constraint x ≥ 1.
We can consider the set

S = {(x, y, z) : x2 + y2 + z2 = 3, x ≥ 1}

as the union of two components. The maximum over the first com-
ponent

S1 = {(x, y, z) : x2 + y2 + z2 = 3, x = 1}

was found to occur at the point

c =

(

1,

√

8

13
, 1.5

√

8

13

)

in our previous analysis, and we can calculate that

f(x, y, z) = 1 + 6.5

√

8

13
= 6.01

at this point. To consider the remaining part

S2 = {(x, y, z) : x2 + y2 + z2 = 3, x > 1},

we return to our analysis from Example 2.3, noting that there is no
local maximum of f anywhere on this set. Therefore, the maximum
of f on S1 must be the maximum of the function f on the set S. If
we had considered the maximum of f over the set

S = {(x, y, z) : x2 + y2 + z2 = 3, x ≤ 1},

then the maximum would be at the point

a =

(

1

2
,
2

2
,
3

2

)

·
√

6

7

found in our analysis of Example 2.3.
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Returning now to the problem introduced at the beginning of this section, we
are ready to continue the modeling process with step 3. We will formulate the
revised color TV problem as a constrained multivariable optimization problem.
We wish to maximize y = P (profit) as a function of our two decision variables,
x1 = s and x2 = t. We have the same objective function

y = f(x1, x2)

= (339− 0.01x1 − 0.003x2)x1 + (399− 0.004x1 − 0.01x2)x2

− (400, 000 + 195x1 + 225x2).

We wish to maximize f over the set S consisting of all x1 and x2 satisfying the
constraints

x1 ≤ 5, 000

x2 ≤ 8, 000

x1 + x2 ≤ 10, 000

x1 ≥ 0

x2 ≥ 0.

The set S is called the feasible region because it represents the set of all feasible
production levels. Figure 2.10 shows a graph of the feasible region for this
problem.

We will apply Lagrange multiplier methods to find the maximum of y =
f(x1, x2) over the set S. Compute

∇f = (144− 0.02x1 − 0.007x2, 174− 0.007x1 − 0.02x2).

Since ∇f ̸= 0 in the interior of S, the maximum must occur on the boundary.
Consider first the segment of the boundary on the constraint line

g(x1, x2) = x1 + x2 = 10, 000.

Here ∇g = (1, 1), so the Lagrange multiplier equations are

144− 0.02x1 − 0.007x2 = λ

174− 0.007x1 − 0.02x2 = λ.
(2.12)

Solving these two equations together with the constraint equation

x1 + x2 = 10, 000

yields

x1 =
50, 000

13
≈ 3, 846

x2 =
80, 000

13
≈ 6, 154

λ = 24.
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Figure 2.10: Graph showing the set of all feasible production levels x1 of 19–inch
sets and x2 of 21–inch sets for the color TV problem with constraints.
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Figure 2.11: Graph showing level sets of profit y = f(x1, x2) versus production
levels x1 of 19–inch sets and x2 of 21–inch sets together with the set of all
feasible production levels for the color TV problem with constraints.
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Substituting back into Eq. (2.2), we obtain y = 532, 308 at the maximum.
Figure 2.11 shows a Maple graph of the level sets of f together with the

feasible region.
The level sets f = C for C = 0, 100, 000, . . . , 500, 000 form smaller and

smaller concentric rings, all of which intersect the feasible region. The level set
f = 532, 308 forms the smallest ring. This set barely touches the feasible region
S, and is tangent to the line x1 + x2 = 10, 000 at the optimum point. This
graphical evidence indicates that the critical point found by using Lagrange
multipliers along the constraint line x1 + x2 = 10, 000 is actually the maximum
of the function f over the feasible region S.

Figure 2.12: Optimal solution to the color TV problem with constraints using
the computer algebra system Mathematica.

An algebraic proof that this point is actually the maximum is a bit more
complicated. By comparing values of f at this critical point with values at
the endpoints (5, 000, 5, 000) and (2, 000, 8, 000), we can show that this critical
point is the maximum over this line segment. Then we can optimize f over the
remaining line segments and compare results. For example, the maximum of
f over the line segment along the x1 axis occurs at x1 = 5, 000. To see this,
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apply Lagrange multipliers with g(x1, x2) = x2 = 0. Here ∇g = (0, 1), so the
Lagrange multiplier equations are

144− 0.02x1 − 0.007x2 = 0

174− 0.007x1 − 0.02x2 = λ.

Solving these two equations together with the constraint equation x2 = 0 yields
x1 = 7, 200, x2 = 0, and λ = 123.6. This is outside the feasible region, so the
max–min along this segment must occur at the endpoints (0, 0) and (5, 000, 0).
The first is the minimum and the second is the maximum, since the value of f
at the second is greater. It is also possible to optimize along this line segment
by substituting x2 = 0 and using one variable methods. Since the largest
value of f occurs on the slanted line segment, we have found the maximum
over S. Some of the calculations in step 4 are rather involved. In such cases
it is appropriate to use a computer algebra system to simplify the process of
computing derivatives and solving equations. Figure 2.12 shows the results of
using the computer algebra system Mathematica to perform the calculations of
step 4 for the constraint line x1 + x2 = 10, 000.

In plain English, the company can maximize profits by producing 3,846 of
the 19–inch sets and 6,154 of the 21–inch sets for a total of 10,000 sets per year.
This level of production uses all of the available excess production capacity. The
resource constraints on the availability of TV circuit boards are not binding.
This venture will produce an estimated profit of $532,308 annually.

2.3 Sensitivity Analysis and Shadow Prices

In this section we discuss some of the specialized techniques for sensitivity anal-
ysis in Lagrange multiplier models. It turns out that the multipliers themselves
have a real–world significance.

Before we report the results of our model analysis in Example 2.2, it is
important to perform sensitivity analysis. At the end of Section 2.1 we inves-
tigated the sensitivity to price elasticity for a model without constraints. The
procedure for our new model is not much different. We examine the sensitivity
to a particular parameter value by generalizing the model slightly, replacing the
assumed value with a variable. Suppose we want to look again at the price
elasticity, a, for 19–inch sets. We rewrite the objective function as in Eq. (2.7)
so that

∇f =

(

∂f

∂x1

,
∂f

∂x2

)

,

where ∂f/∂x1 and ∂f/∂x2 are given by Eq. (2.8). Now the Lagrange multiplier
equations are

144− 2ax1 − 0.007x2 = λ

174− 0.007x1 − 0.02x2 = λ.
(2.13)


