
Sesión 7: Bugs y debugging

Camilo Espejo1

camilo.espejo@utadeo.edu.co

1Maestrı́a en Modelado y Simulación
Departamento de Ciencias Básicas, Univerisdad Jorge Tadeo Lozano

13 de septiembre de 2014

Curso optativo:
Programación para M&S

Sumario

Bugs
Introducción
Tipos de bugs

Debugging

Bugs en los programas
”It has been just so in all of my inventions. The first step is an intuition, and comes with
a burst, then difficulties arise — this thing gives out and [it is] then that ”Bugs”— as
such little faults and difficulties are called — show themselves and months of intense
watching, study and labor are requisite before commercial success or failure is
certainly reached.”

Thomas Edison, 1878.

In 1946, when Hopper was released from ac-

tive duty, she joined the Harvard Faculty at the

Computation Laboratory where she continued

her work on the Mark II and Mark III. Operators

traced an error in the Mark II to a moth trapped in

a relay, coining the term bug. This bug was care-

fully removed and taped to the log book. Stem-

ming from the first bug, today we call errors or

glitches in a program a bug.

Bugs en los programas
”It has been just so in all of my inventions. The first step is an intuition, and comes with
a burst, then difficulties arise — this thing gives out and [it is] then that ”Bugs”— as
such little faults and difficulties are called — show themselves and months of intense
watching, study and labor are requisite before commercial success or failure is
certainly reached.”

Thomas Edison, 1878.

In 1946, when Hopper was released from ac-

tive duty, she joined the Harvard Faculty at the

Computation Laboratory where she continued

her work on the Mark II and Mark III. Operators

traced an error in the Mark II to a moth trapped in

a relay, coining the term bug. This bug was care-

fully removed and taped to the log book. Stem-

ming from the first bug, today we call errors or

glitches in a program a bug.

Tipos de bugs
Comportamientos inesperados, más info: BUG

I Bugs aritméticos: división por cero, overflow, underflow,
pérdida de precisión por redondeo o algorı́tmos inestables.

I Bugs lógicos: recursividad infinita, loops infinitos. Errores
Off-by-one.

I Bugs de sintaxis: Uso de operadores equivocados (= Vs.
==).

I Bugs de recursos: (deref),
I Null pointer dereference.
I Using an uninitialized variable.
I Using an otherwise valid instruction on the wrong data type (see packed

decimal/binary coded decimal).
I Access violations.
I Resource leaks, where a finite system resource (such as memory or file

handles) become exhausted by repeated allocation without release.
I Buffer overflow, in which a program tries to store data past the end of

allocated storage. This may or may not lead to an access violation or
storage violation. These bugs can form a security vulnerability.

I Excessive recursion which — though logically valid — causes stack
overflow.

I Use-after-free error, where a pointer is used after the system has freed the
memory it references.

I Double free error.

http://en.wikipedia.org/wiki/Software_bug
http://en.wikipedia.org/wiki/Segmentation_fault

Tipos de bugs
Comportamientos inesperados, más info: BUG

I Bugs aritméticos: división por cero, overflow, underflow,
pérdida de precisión por redondeo o algorı́tmos inestables.

I Bugs lógicos: recursividad infinita, loops infinitos. Errores
Off-by-one.

I Bugs de sintaxis: Uso de operadores equivocados (= Vs.
==).

I Bugs de recursos: (deref),
I Null pointer dereference.
I Using an uninitialized variable.
I Using an otherwise valid instruction on the wrong data type (see packed

decimal/binary coded decimal).
I Access violations.
I Resource leaks, where a finite system resource (such as memory or file

handles) become exhausted by repeated allocation without release.
I Buffer overflow, in which a program tries to store data past the end of

allocated storage. This may or may not lead to an access violation or
storage violation. These bugs can form a security vulnerability.

I Excessive recursion which — though logically valid — causes stack
overflow.

I Use-after-free error, where a pointer is used after the system has freed the
memory it references.

I Double free error.

http://en.wikipedia.org/wiki/Software_bug
http://en.wikipedia.org/wiki/Segmentation_fault

Tipos de bugs
Comportamientos inesperados, más info: BUG

I Bugs aritméticos: división por cero, overflow, underflow,
pérdida de precisión por redondeo o algorı́tmos inestables.

I Bugs lógicos: recursividad infinita, loops infinitos. Errores
Off-by-one.

I Bugs de sintaxis: Uso de operadores equivocados (= Vs.
==).

I Bugs de recursos: (deref),
I Null pointer dereference.
I Using an uninitialized variable.
I Using an otherwise valid instruction on the wrong data type (see packed

decimal/binary coded decimal).
I Access violations.
I Resource leaks, where a finite system resource (such as memory or file

handles) become exhausted by repeated allocation without release.
I Buffer overflow, in which a program tries to store data past the end of

allocated storage. This may or may not lead to an access violation or
storage violation. These bugs can form a security vulnerability.

I Excessive recursion which — though logically valid — causes stack
overflow.

I Use-after-free error, where a pointer is used after the system has freed the
memory it references.

I Double free error.

http://en.wikipedia.org/wiki/Software_bug
http://en.wikipedia.org/wiki/Segmentation_fault

Tipos de bugs
Comportamientos inesperados, más info: BUG

I Bugs aritméticos: división por cero, overflow, underflow,
pérdida de precisión por redondeo o algorı́tmos inestables.

I Bugs lógicos: recursividad infinita, loops infinitos. Errores
Off-by-one.

I Bugs de sintaxis: Uso de operadores equivocados (= Vs.
==).

I Bugs de recursos: (deref),
I Null pointer dereference.
I Using an uninitialized variable.
I Using an otherwise valid instruction on the wrong data type (see packed

decimal/binary coded decimal).
I Access violations.
I Resource leaks, where a finite system resource (such as memory or file

handles) become exhausted by repeated allocation without release.
I Buffer overflow, in which a program tries to store data past the end of

allocated storage. This may or may not lead to an access violation or
storage violation. These bugs can form a security vulnerability.

I Excessive recursion which — though logically valid — causes stack
overflow.

I Use-after-free error, where a pointer is used after the system has freed the
memory it references.

I Double free error.

http://en.wikipedia.org/wiki/Software_bug
http://en.wikipedia.org/wiki/Segmentation_fault

Debugging

I Encontrar y reparar los bugs.
I Es preciso automatizar el proceso → GDB

	Bugs
	Introducción
	Tipos de bugs

	Debugging

