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Notation and de�nitions

Notation

Partial derivatives �and their presence in partial di�erential equations� are
noted in several ways according to the author (and the context in each
speci�c �eld). For example, these three expressions denote the same:

∂f(x, t)

∂t
= κ

∂2f(x, t)

∂x2

∂tf = κ∂xxf

ft = κfxx

where simplicity and clarity (and often space) are the criteria to choose a
particular notation
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De�nition of PDE

A partial di�erential equation (PDE) is an equation establishing a
relationship between a function of two or more independent variables and
the partial derivatives of this function with respect to these independent
variables � i.e., given the multivariate function
f(x1, x2, . . . , xn) : Rn 7−→ R, the expression

F (f, fx1 , fx2 , . . . , fxn, fx1x1 , fx1x2 , . . . , fx1x2···xn , . . . , fxn···xn. , x1, x2, . . . , xn) = 0

is a PDE where its order corresponds to the maximum number of
derivatives in the equation
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Examples and linearity

Being f = f(x, t)

∂2t f + cos f∂xf = 0

∂2t f +2∂3xf = t

−∂tf + (1 + x)∂2xf = f

Which are linear and nonlinear? Which are their order?

∂2t f + ∂xf = sinx2

−∂tg + 2∂2xg = t

is a second-order linear system of PDEs in the unknowns f and g
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Goal of modeling by PDEs

When approaching to the mathematical modeling of a particular system
by PDEs, a major question arises:

Goal of Modeling

Which PDEs are good models for the system?

Scienti�c method behind

Good models are often the end result of confrontations between
experimental data and theory.
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Issues on PDE analysis

1 Does the PDE have any solutions?

2 What kind of �data� do we need to specify in order to solve the
PDE?

3 Are the solutions corresponding to the given data unique?

4 What are the basic qualitative properties of the solution?

5 Does the solution contain singularities? If so, what is their nature?

6 What happens if we slightly vary the data? Does the solution then
also vary only slightly?

7 What kinds of quantitative estimates can be derived for the
solutions?

8 How can we de�ne the size (i.e., �the norm�) of a solution in way
that is useful for the problem at hand?
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Conic section analogy

Conic sections gave name to second-order linear partial di�erential
equation categories because of the analogy of their discriminant, i.e.:

Conic sections can be written in their general form

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0

The discriminant B2 − 4AC permits the classi�cation between
hyperbolic, parabolic and elliptic conic sections:

B2 − 4AC Curve

< 0 Ellipse
= 0 Parabola
> 0 Hyperbola

Hugo Franco, PhD Introduction to Numerical Solution of Partial Di�erential Equations



Basics
Second order PDE Classi�cation

Numerical solutions to PDEs: Finite Di�erence Method
Further methods

Elliptic equations
Parabolic Equations
Hyperbolic Equations
Boundary Conditions

Spatial 2D Second order linear PDE Classi�cation

Spatial 2D Second order linear partial di�erential equations are of great
interest since they are in the base of models in a wide range of Natural
Science problems and, then, Engineering applications.

A general formulation of a 2nd. order linear PDE is as follows:

A∂xxf +B∂xyf + C∂yyf +D∂xf + E∂yf + Ff = 0

so, analogously (just in name!) with conic sections, these equations
can be classi�ed as follows:

B2 − 4AC PDE Type Characteristic paths

< 0 Elliptic Complex
= 0 Parabolic Real and repeated
> 0 Hyperbolic Real and distinct
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Elliptic PDEs

Elliptic PDE equations are closely related to
Equilibrium problems

Their solution in each point depends on the
value of the solution function across the entire
domain under consideration. Then, its
numerical solution is usually approached by
relaxation algorithms

Example: steady heat di�usion (homogeneous
Laplacian problem)

∇2T = 0

subject to aT + bTn = c

Laplacian operator applies as follows:
∇2T = ∆T =(∂xxT + ∂yyT )
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Parabolic PDEs: Heat equation

Parabolic equations are initial value problems
in open domains for at least, one varible.

They are usually related to Propagation
problems (e.g. unsteady di�usion, advection,
etc.). Their numerical solution strategy is,
then, related to marching algorithms (see
�nite di�erences scheme in the Workshop)

Example: unsteady heat di�usion:

Tt = α∇2T

subject to a particular initial temperature
distribution T0 = f(x, t)
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Hyperbolic PDEs: Wave equation

Hyperbolic equations are usually related to Propagation problems
(e.g. wave front spreading, oscillatory motion, etc.)

A classical example of a hyperbolic PDE modeling a propagation
problem is the acoustic wave propagation

Ptt = a2∇2T

Numerical solutions are also based in marching algorithms
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Boundary Conditions

Establishing the proper boundary conditions is a strong requirement to
obtain a good model and, then, a correct, accurate solution to the
problem. Among others, there are two main boundary condition types

Dirichlet boundary conditions

Given a function f : ∂Ω→ R, it is required

u(x) = f(x), x ∈ ∂Ω

Von Neumann boundary conditions: Given a function f : ∂Ω→ R, it
is required

∂u(x)

∂n
= f(x), x ∈ ∂Ω

where n is the unit outward normal of ∂Ω
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On PDE Solutions

There is no general recipe that works for all PDEs.

It's needed a particular analysis for each class of PDE.

Usually, there are no explicit formulas for the solutions to the PDEs.
Instead, it's necessary to estimate the solutions without having
explicit formulas.

A great portion of PDEs, particularly those related to real, complex
physical problems, doesn't have an algebraic/analytic solution
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Numerical derivative interpretation

x x +h

f(x +h)

h

f(x)

x

f(x )

i i

i

i

Tangente local

Aproximación con
diferencia hacia 
adelante

be f(x) a continuous 1-di�erentiable
function. Then

f ′(xi) = lim
h→0

f(xi + h)− f(xi)

h

Numerically approximating, having
0 < h� 1, it holds that

f ′(xi) '
f(xi+1)− f(xi)

h

Problem: slope approximation is
di�erent to actual slope of the
tangent hyperplane at xi
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Centered �nite di�erences

x x +h

f(x +  )

h

f(x)

x

f(x )

i i

i

i

Tangente local

Aproximación con
diferencia hacia 
adelante

h

h
2

x -i

f(x +h)i

f(x -   )i
h
2

h
2

x +i
h
2

Solution: keep the approximation
step in a value of h but adapt the
evaluation interval of the derivative
approximation around xi

f ′(xi) = lim
h→0

f(xi + h
2 )− f(xi − h

2 )

h

numerically approximating, given
0 < h� 1,this yields

f ′(xi) '
f(xi+1)− f(xi−1)

h

Numerical approximation of f ′(xi) is
usually closer to its real value using
centered di�erences than using
forward or backwards di�erences

Hugo Franco, PhD Introduction to Numerical Solution of Partial Di�erential Equations



Basics
Second order PDE Classi�cation

Numerical solutions to PDEs: Finite Di�erence Method
Further methods

Finite Di�erence Method

System Modeling Workshop: Heat Equation

Problem: Describe the evolution of the temperature distribution of a
body (1D rod) being heated in one of its tips

Principle: Energy conservation

Consequence: The total variation of the energetic contents within each
region in the rod [x, x+ ∆x] equals the net heat �ux
through the region
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Previous knowledge on the problem

Fourier's law: heat �ux q (qx for 1D) is negatively proportional to
the spatial di�erences for temperature

q = −K∇T

Using conservation laws and applying the Fourie's law, the heat
equation arises:

T (x, t + ∆t)− T (x, t)

∆t
=

1

Cρ

qx(x)− qx(x + ∆x)

∆x

T (x, t + ∆t)− T (x, t)

∆t
=

K

Cρ

∂T (x+∆x,t)
∂x

− ∂T (x,t)
∂x

∆x

for ∆t→ 0 and ∆x→ 0

∂T

∂t
=

K

Cρ
∇2T
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Heat Equation problem statement

La variación de la distribución de
temperaturas a lo largo del tiempo para
una región está dada por la Ecuación del
Calor:

∂T (~x, t)

∂t
− α∇2T (~x, t) = 0

La aproximación a un caso
unidimensional se convierte en

∂T (x, t)

∂t
= α

∂2T (x, t)

∂x2

having T (x, 0) = Tamb, T (L, t) = Tamb
and T (0, t) = Tflame
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Numerical solution (1D)

The second derivative can be
approximated as

f ′′(x) =
f ′(x+ h

2
)− f ′(x− h

2
)

h

where

f ′(x+
h

2
) '

f(x+ h)− f(x)

h

f ′(x−
h

2
) '

f(x)− f(x− h)

h

replacing, it becomes

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2

Then, the model equation results in

T (x, t+ ht)− T (x, t)

ht
=

α
T (x+ hx, t)− 2T (x, t) + T (x− hx, t)

h2
x

Replacing and organizing, we obtain

Tx,t+1 =

Tx,t + α
∆t

(∆x)2
(Tx+1,t − 2Tx,t + Tx−1,t)
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Algorithm Sketch

Read L, K, Cρ, ∆x, ∆t

Initialize array Tprevious[0:L ∗∆x]

Initialize array Tcurrent[0:L ∗∆x]

α = K/Cρ

while ~stop

for i from 0 to [L ∗∆x]

Tcurrent[i]=Tprevious[i]+α
∆t

(∆x)2
*(Tprevious[i+ 1]-

2*Tprevious[i]+Tprevious[i− 1])
Write Tcurrent

end for

end while
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Further methods

Finite Element Methods: complex geometries

Finite Volume Methods: complex geometries and relationships

Spectral Methods: better accuracy for smooth problems

Mesh�free methods: reduce artifacts due to discretization
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