Edge detection and patches

Francisco Gomez J
Computer Vision
MMS
U Central and UJTL

Edge

 Edge point in the image where intensities are
changing rapidly
* Sobel operator does not provide an edge it

provides the magnitude of the gradient in
each pixel. How we can extract the edge?

-1 10 |+1 +1 | 42 | +1

2|0 |+2 0[0]0 le\/(i_/) +(iJ
oX oy

-1] 0 | +1 -11-2] -1]

X filter y filter

Gradient magnitude is not binary

Thresholding is not enought

Deri

vatives amplifies noise

» Noise is amplified by derivatives

Smooth before taking
Derivatives!!

Scale space operator

\
4

How much the image should be smoothed?

Scale space

Images created by applying a series of operators at
different scales

I _ohmeed

G (x,y)=——e
(X,) ry—

0.08

0.07F

0.06F

0.05F

0.0

0.03F

0.02p

0.01¢

0 10 20 0 4« 50 60 70 a0 90 100

Convolving with a Gaussian blur helps to remove
structures smaller that

Derivatives of a Gaussian

Gradient of smoothed image

V[G, *I]=[VG,]*1I

Edge points

* Properties

— Good detection (minimize the probability of
detecting false edges and missing real edges)

— Good localization (edges should be detected close
to real edges)

— Single response (just one point for each true edge
point)

 The derivative of the Gaussian is a good
aproximation to this operator!!

Algorithm

. Convolve image with derivative of Gaussian
operators (% %

. Find the gradient direction in each pixel
(atan2(Gy,Gx))

. Quantize into 0, 45, 90 and 135 degrees
directions

. If magnitude of gradient is larger than the
two neighbors along this direction, it is a
candidate edge point

Edge linking

 To recognize objects it would be desirable to
have connected curves or lines

e But some point maybe weak and maybe
missed, aka, broken curve

e Solution:

— First use a high threshold to capture strong edge
pixels

— Links points into a contourn using a lower
threshold («hystheresis»)

Algorithm

e Algorithm
— Find all edge points greater than t,,

— From each strong edge point, follow the chains of
connected edge points in both directions
perpendicular to the edge normal

— Mark all points greater than t,_,

Demo

[E,thresh]=edge(l, ‘canny’, thresh, sigma);
for s =0.5:0.5:5

E = edge(l, 'canny’, [], s);

imshow(E);

pause;

end
for tHigh = 0.05:0.05:0.4
E = edge(l, 'canny’, [0.4*tHigh tHigh], 1.5);

imshow(E);
pause;

end

Point and patch features

e How to find interesting
points in the image?
— These features can be used
for object recognition

— Can be used to track
objects in motion

e Point features are locally
unigque:
— Good: Ej. Corners

— Bad: Flat regions or long
edges

www.jidul.com

Moravec

Find points in which local variances in
different directions (vertical, horizontal
and diagonal) are high
Algorithm
— V1=Variance for pixels [(x-w,y):I(x+w,y)
— V2=Variance for pixels I(x,y-w):l(x,y-w)
— V3=Variance for pixels [(x-w,y-w):I(x-w,y-w)
— V4=Variance for pixels I(x+w,y-w):l(x-
W,y+Ww)

Interest value min(v1,v2,v3,v4)

Implementing Moravec operator

N

. . .)] ' X
The variance can be estimated by using the o =—>(x, - u)
NS
l N) 2
=—) \x., = 2ux;, + 4
L3 (o 20+)

Implementing movarec

function Ir = moravev(l,N)

aveh = ones(1,N)/N;

varl = applyFilter(l,aveh);

avev = ones(N,1)/N;

var2 = applyFilter(l,avev);

aved1 = eye(N,N)/N

var3 = applyFilter(l,avedl);

aved?2 = fliplr(avedl)

vard = applyFilter(l,avedl);

Ir = min(min(varl,var2),min(var3,var3));

function varh = applyFilter(l,ave)

% computes the means

u = imfilter(l,ave);

% computes the means squares
u2 = u.*u;

% computes the image square
Isq = I.*1;

% Sum of the squares

u2ave = imfilter(Isq,ave);

varh = u2ave - u2;

Movarec results

Feature detection

Translation

* We want to MATCH
a patch from image
|, to image |,

e |f we assume that
intensities does not
change between
frames, and there is
only translational
motion

I (x; +u) =1,(x;)

Equal intensity

Solution

e We can find the displacement u that minimize
the sum of the square differences

Ewssp(u) = Y w(i)[I1(x:i +u) — Io(x:)]”.

J

How to choose patches?

For the correct value u we want that E(u) have a
minimum
The information in the patch determines the stability

— Featureless patches cannot be determined uniquely

Then how stable is a patch?

Eac(Au) = Z w(z;) [To(x; + Au) — To(x;))?

If this surface has a minimum then 10 is a good patch

Minimum

(b) (©)

Figure 4.5 Three auto-correlation surfaces Exc(Aw) shown as both grayscale images and
surface plots: (a) The original image is marked with three red crosses to denote where the
auto-correlation surfaces were computed; (b) this patch is from the flower bed (good unique
minimum); (c) this patch is from the roof edge (one-dimensional aperture problem); and (d)
this patch is from the cloud (no good peak). Each grid point in figures b—d is one value of
Au.

Non minimum

e Using the Taylor series expansion
Eac(Au) = Zw(wi)[fo(wi + Au) — Ip(x;)]

~ Y wl)lo(e) + V() - du— lofa)?

Z w(x;)[VIo(x;) - Au)?

7

. T
= Hn AA'u,, Correlation
oI, O, br 2 I,
N — | A — T y
VIO(mZ) (oz’ 8y)(ml) T W Ia:-[y I;Z

Autocorrelation matrix

Demo

EAc = zeros(100,100);

EAc(ux,uy) = [ux-50 uy-50]*A*[ux-50 uy-50]";

fOr ux:l:loo
for Uy:l:loo
A=[121;112];
%[0 0; 0 22];
end
end
figure
surf(EAc);

S rserrs
e

N
R
&
§
N:

et
e sess

7

RN

R

RRHH:HnH

N

Rinns

IR

RS

N

100

e Au’ AAuw, is a second order polynomial

ax?

InfMmMum

e If aand c are big thereis a clear m

e If bis not zero it would be flat

I I

I I

I I
+ -4 - ==
I I

I I

I I

I

I

I

SO
cocEEiEuE s *

SRR

7

G

B L
i

100

100

80

60

40

20

Using eigenvalues

e Using the eigen values of A (Demo...)

* A, and A, are big clear minimun, if one of
them is small then flat in that direction...

We don’t need to compute the eigen
values

e Minimum eigen-value

e Compute this quantity (Shi and Tomasi)

det(A) — a trace(A)? = AoA; — a(Ag + A1)?
a = 0.06

e Use the harmonic mean
det A Ao\
tr A Ao + A1 ’

Demo

clear all
close all

| = double(imread('test000.jpg'));

% gaussian blur
s=1.0;
| =imfilter(l,fspecial('gaussian',round(6*s),s));

figure
imshow(l,[]);

gx = imfilter(1,[1 -1]);
gy = imfilter(1,[1 -11');

% compute the square derivatives in each pixel
gXx = gx.*gx;
8yy = gy.*gy;
gxy = gx.*gy;

% now the values are averaged in a neighboorhood
N=13;
w = ones(N);

A1l = imfilter(gxx,w);
A12 = imfilter(gxy,w);
A22 = imfilter(gyy,w);

detA = A11.*¥A22 - A12.*A12;
traceA = A1l + A22;
s = detA./traceA;

s(isnan(s)) = 0;

figure
imshow(s,[])

Extracting local maxima

Multiple minimums

6 A 1D cross
re .
section
5
4
thresh
3
2 2
1 ?
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15 16

Smax = (S==imdilate(S,ones(N)))

1 2 3 4 S & 7 8 9 10 11 12 13 14 15 16

Demo

r=N;
Lmax = (s==imdilate(s,strel('disk',2*r)));

% everything near to the border is zero

Lmax(1:N,:) = false;
Lmax(:,1:N) = false;
Lmax(end-N:end,:) = false;
Lmax(:,end-N:end) = false;

[rows cols] = find(Lmax);
vals = s(Lmax)

figure

imshow(l,[])

hold on

for i=1:size(rows,1)
if vals(i)>4000

rectangle('position’,[cols(i)-N/2,rows(i)-N/2,N,N],'EdgeColor','r');

end

end

Template matching

o After extracting the patches how to identify it
in @ new image?

E()=Y [I,(x, +u)—I,(x,))]

B

= le(xi -|-ll)2 —2211(3(,- +u)10(xf)+210(xi)2

v
This is the cross-correlation
This value is high when 10 matches 11

Cross correlation as a distance

m/2 n/2

e Correlationisasum cxy)= 2, 2 wst) f(x+s,y+10)

s=—m/2 t=—n/2

of products =w(x,»)® f(x,)

e Correlation is a dot
product

C:W]fi +W2f2 +”'+wmnfmn ZWf

* |t measure the

T c=]w||f|cost9
similarity

Correlation is matching

: : : AR e S A AN,
* Find w in the image (m —1)/2
'L 1gin *
f(XIy) ik i — 1)/2 >
|77 >
h
L(.\'._\')

e The correlation *

Template w - /
centered at an arbitrary

m/2 n/2 9
location (x, y)

c(x,y) = _Z D w(s, 1) f(x+s,y+1)

s=—m/2 t=—n/2

=w(x,»)® f(x,y)

Image, f

e |s high when w . Padding
matches f

Template matching

* Precision can be improved by substracting
the mean

D (s,)= WILf (x+s,y+1)— f]

S0

c(x,y)= 172
{z[wu,o—wf z[f<x+s,y+z>—ff}

S,z

e This is the normalized cross-coefficient (-1,1)

Demo

| = imread('test000.jpg');
W = imcrop(l)

¢ = normxcorr2(w,l);
imshow(c,[])

cmax = max(c(:))

[y2 x2] = find(C==cmax);

