
Edge detection and patches

Francisco Gómez J

Computer Vision

MMS

U Central and UJTL

Edge

• Edge point in the image where intensities are

changing rapidly

• Sobel operator does not provide an edge it

provides the magnitude of the gradient in

each pixel. How we can extract the edge?

Gradient magnitude is not binary

Thresholding is not enought

Derivatives amplifies noise

Noise is amplified by derivatives

Smooth before taking

Derivatives!!

Scale space operator

How much the image should be smoothed?

Scale space

σ

Images created by applying a series of operators at

different scales

Convolving with a Gaussian blur helps to remove

structures smaller that

Derivatives of a Gaussian

Gradient of smoothed image

Edge points

• Properties

– Good detection (minimize the probability of

detecting false edges and missing real edges)

– Good localization (edges should be detected close

to real edges)

– Single response (just one point for each true edge

point)

• The derivative of the Gaussian is a good

aproximation to this operator!!

Algorithm

1. Convolve image with derivative of Gaussian
operators

2. Find the gradient direction in each pixel
(atan2(Gy,Gx))

3. Quantize into 0, 45, 90 and 135 degrees
directions

4. If magnitude of gradient is larger than the
two neighbors along this direction, it is a
candidate edge point

Edge linking

• To recognize objects it would be desirable to
have connected curves or lines

• But some point maybe weak and maybe
missed, aka, broken curve

• Solution:

– First use a high threshold to capture strong edge
pixels

– Links points into a contourn using a lower
threshold («hystheresis»)

Algorithm

• Algorithm

– Find all edge points greater than thigh

– From each strong edge point, follow the chains of

connected edge points in both directions

perpendicular to the edge normal

– Mark all points greater than tlow

Demo

[E,thresh]=edge(I, ‘canny’, thresh, sigma);

for s = 0.5:0.5:5

E = edge(I, 'canny', [], s);

imshow(E);

pause;

end

for tHigh = 0.05:0.05:0.4

E = edge(I, 'canny', [0.4*tHigh tHigh], 1.5);

imshow(E);

pause;

end

Point and patch features

• How to find interesting
points in the image?
– These features can be used

for object recognition

– Can be used to track
objects in motion

• Point features are locally
unique:
– Good: Ej. Corners

– Bad: Flat regions or long
edges

www.jidul.com

Moravec

• Find points in which local variances in

different directions (vertical, horizontal

and diagonal) are high

• Algorithm

– V1=Variance for pixels I(x-w,y):I(x+w,y)

– V2=Variance for pixels I(x,y-w):I(x,y-w)

– V3=Variance for pixels I(x-w,y-w):I(x-w,y-w)

– V4=Variance for pixels I(x+w,y-w):I(x-

w,y+w)

• Interest value min(v1,v2,v3,v4)

Implementing Moravec operator

The variance can be estimated by using the

Implementing movarec

function Ir = moravev(I,N)

aveh = ones(1,N)/N;

var1 = applyFilter(I,aveh);

avev = ones(N,1)/N;

var2 = applyFilter(I,avev);

aved1 = eye(N,N)/N

var3 = applyFilter(I,aved1);

aved2 = fliplr(aved1)

var4 = applyFilter(I,aved1);

Ir = min(min(var1,var2),min(var3,var3));

function varh = applyFilter(I,ave)

% computes the means

u = imfilter(I,ave);

% computes the means squares

u2 = u.*u;

% computes the image square

Isq = I.*I;

% Sum of the squares

u2ave = imfilter(Isq,ave);

varh = u2ave - u2;

Movarec results

Feature detection

• We want to MATCH
a patch from image
I0 to image I1

• If we assume that
intensities does not
change between
frames, and there is
only translational
motion

Translation

Equal intensity

Solution

• We can find the displacement u that minimize

the sum of the square differences

How to choose patches?

• For the correct value u we want that E(u) have a

minimum

• The information in the patch determines the stability

– Featureless patches cannot be determined uniquely

• Then how stable is a patch?

• If this surface has a minimum then I0 is a good patch

Minimum

Non minimum

• Using the Taylor series expansion

Autocorrelation matrix

Correlation

Demo

EAc = zeros(100,100);

for ux=1:100

for uy=1:100

A = [12 1; 1 12];

%[0 0; 0 22];

%[21 -21;-21 21]

EAc(ux,uy) = [ux-50 uy-50]*A*[ux-50 uy-50]';

end

end

figure

surf(EAc);

0
20

40
60

80
100

0

50

100
0

2

4

6

8

x 10
4

0
20

40
60

80
100

0

50

100
0

1

2

3

4

5

6

x 10
4

0 20 40 60 80 100
0

50

100

0

0.5

1

1.5

2

2.5

x 10
5

• iis a second order polynomial

• If a and c are big there is a clear minimum

• If b is not zero it would be flat:

0 20 40 60 80 100
0

50

100

0

0.5

1

1.5

2

2.5

x 10
5

Using eigenvalues

• Using the eigen values of A (Demo…)

• λ1 and λ2 are big clear minimun, if one of

them is small then flat in that direction…

We don’t need to compute the eigen

values

• Minimum eigen-value

• Compute this quantity (Shi and Tomasi)

• Use the harmonic mean

Demo

clear all

close all

I = double(imread('test000.jpg'));

% gaussian blur

s = 1.0;

I =imfilter(I,fspecial('gaussian',round(6*s),s));

figure

imshow(I,[]);

gx = imfilter(I,[1 -1]);

gy = imfilter(I,[1 -1]');

% compute the square derivatives in each pixel

gxx = gx.*gx;

gyy = gy.*gy;

gxy = gx.*gy;

% now the values are averaged in a neighboorhood

N = 13;

w = ones(N);

A11 = imfilter(gxx,w);

A12 = imfilter(gxy,w);

A22 = imfilter(gyy,w);

detA = A11.*A22 - A12.*A12;

traceA = A11 + A22;

s = detA./traceA;

s(isnan(s)) = 0;

figure

imshow(s,[])

Extracting local maxima

Multiple minimums

Smax = (S==imdilate(S,ones(N)))

Demo

r= N;

Lmax = (s==imdilate(s,strel('disk',2*r)));

% everything near to the border is zero

Lmax(1:N,:) = false;

Lmax(:,1:N) = false;

Lmax(end-N:end,:) = false;

Lmax(:,end-N:end) = false;

[rows cols] = find(Lmax);

vals = s(Lmax)

figure

imshow(I,[])

hold on

for i=1:size(rows,1)

if vals(i)>4000

rectangle('position',[cols(i)-N/2,rows(i)-N/2,N,N],'EdgeColor','r');

end

end

•

Template matching

• After extracting the patches how to identify it

in a new image?

This is the cross-correlation

This value is high when I0 matches I1

Cross correlation as a distance

• Correlation is a sum

of products

• Correlation is a dot

product

• It measure the

similarity

Correlation is matching

• Find w in the image

f(x,y)

• The correlation

• Is high when w

matches f

Template matching

• Precision can be improved by substracting

the mean

• This is the normalized cross-coefficient (-1,1)

Demo

I = imread('test000.jpg');

W = imcrop(I)

c = normxcorr2(w,I);

imshow(c,[])

cmax = max(c(:))

[y2 x2] = find(C==cmax);

