Difference between revisions of "MMS: Mathematical Foundations of M&S"
From hpcwiki
(→Content) |
(→Week activities) |
||
(32 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
+ | [[File:Logos-tadeo-central.png]] | ||
== English version == | == English version == | ||
This is a basic subject on matrix theory and linear algebra. Emphasis is given to topics that will be useful in models and simulation for several disciplines. It includes systems of equations, vector spaces, determinants and eigenvalues. | This is a basic subject on matrix theory and linear algebra. Emphasis is given to topics that will be useful in models and simulation for several disciplines. It includes systems of equations, vector spaces, determinants and eigenvalues. | ||
Line 9: | Line 10: | ||
=== Content === | === Content === | ||
− | < | + | <ul> |
<li>Vectorial calculus. One variable calculus.</li> | <li>Vectorial calculus. One variable calculus.</li> | ||
<ol> | <ol> | ||
Line 30: | Line 31: | ||
<li>Second order differential equations.</li> | <li>Second order differential equations.</li> | ||
+ | <ol> | ||
</li><li>Homogeneous Linear ODEs of Second Order | </li><li>Homogeneous Linear ODEs of Second Order | ||
</li><li>Homogeneous Linear ODEs with Constant Coefficients | </li><li>Homogeneous Linear ODEs with Constant Coefficients | ||
Line 38: | Line 40: | ||
</li><li>Nonhomogeneous ODEs | </li><li>Nonhomogeneous ODEs | ||
</li><li>Modeling: Forced Oscillations. | </li><li>Modeling: Forced Oscillations. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
</ol> | </ol> | ||
Line 62: | Line 51: | ||
<li>Eigen-values and eigen-vectors</li> | <li>Eigen-values and eigen-vectors</li> | ||
</ol> | </ol> | ||
+ | |||
<ol> | <ol> | ||
<li>Matrix: Operations and properties.</li> | <li>Matrix: Operations and properties.</li> | ||
Line 69: | Line 59: | ||
</ol> | </ol> | ||
+ | <ol> | ||
+ | <li>systems of ordinary differential equations.</li> | ||
+ | <li> Homogeneous systems of ordinary differential equations.</li> | ||
+ | <li>Resolve linear systems of differential equations .</li> | ||
+ | <li>linearization of high order differential equations.</li> | ||
+ | </ol> | ||
− | <li> | + | <li>Vectorial calculus. Several variable functions.</li> |
<ol> | <ol> | ||
− | <li> | + | </li><li>Vectors in 2-Space and 3-Space. |
− | <li> | + | </li><li>Inner Product (Dot Product). |
− | <li> | + | </li><li>Vector Product (Cross Product). |
− | <li> | + | </li><li>Vector and Scalar Functions and their Fields. |
− | <li> | + | </li><li>Vector Calculus: Derivatives. |
− | <li>Vector | + | </li><li>Functions of Several Variables. |
+ | </li><li> Gradient of a Scalar Field. | ||
+ | </li><li>Directional Derivatives. | ||
+ | </li><li>Divergence of a Vector Field. | ||
+ | </li><li>Curl of a Vector Field. | ||
+ | </li><li>Lagrange multipliers. | ||
</ol> | </ol> | ||
− | <li> | + | <li>partial differential equations.</li> |
<ol> | <ol> | ||
− | + | </li><li>Introduction to partial differential equations (PDE) | |
− | <li> | + | </li><li>Solution by transforms methods</li> |
− | + | ||
− | <li>Solution by transforms methods</li | + | |
− | + | ||
− | + | ||
</ol> | </ol> | ||
+ | </ul> | ||
=== Week activities === | === Week activities === | ||
Line 93: | Line 91: | ||
<tr><td>Session date</td><td>Teacher</td><td>Topic</td><td>External resources</td></tr> | <tr><td>Session date</td><td>Teacher</td><td>Topic</td><td>External resources</td></tr> | ||
<tr> | <tr> | ||
− | <td>1 - | + | <td>1 - 31-Julio</td><td>Todos, Camilo</td> |
<td> | <td> | ||
+ | |||
<ul> | <ul> | ||
<li>Presentation</li> | <li>Presentation</li> | ||
− | <li> | + | <li>Vectorial calculus. One variable calculus.</li> |
− | < | + | <ol> |
− | <li> | + | <li>Review of one variable calculus.</li> |
− | <li> | + | <li>Function definition.</li> |
− | <li> | + | <li>Derivatives.</li> |
− | <li> | + | <li>Integrals.</li> |
+ | </ol> | ||
</ul> | </ul> | ||
</td> | </td> | ||
<td> | <td> | ||
− | [http://www.mathresource.iitb.ac.in/linear%20algebra/appletsla.html Applets algebra lineal]<br/> | + | <!--[http://www.mathresource.iitb.ac.in/linear%20algebra/appletsla.html Applets algebra lineal]<br/> |
[http://ocw.mit.edu/ans7870/18/18.06/tools/Applets_sound/uropmovie.html Matrix Multiplicaction]<br/> | [http://ocw.mit.edu/ans7870/18/18.06/tools/Applets_sound/uropmovie.html Matrix Multiplicaction]<br/> | ||
[http://ocw.mit.edu/ans7870/18/18.06/javademo/GaussElim/ Gauss Elimination]<br/> | [http://ocw.mit.edu/ans7870/18/18.06/javademo/GaussElim/ Gauss Elimination]<br/> | ||
[http://ocw.mit.edu/ans7870/18/18.06/javademo/Determinant/ Determinants]<br/> | [http://ocw.mit.edu/ans7870/18/18.06/javademo/Determinant/ Determinants]<br/> | ||
[http://people.hofstra.edu/Stefan_Waner/tutorialsf1/scriptpivot2.html Gauss-Jordan Pivot trainning]<br/> | [http://people.hofstra.edu/Stefan_Waner/tutorialsf1/scriptpivot2.html Gauss-Jordan Pivot trainning]<br/> | ||
− | [http://personal.bgsu.edu/~meel/Tools/ Algebra Lineal tutoriales] | + | [http://personal.bgsu.edu/~meel/Tools/ Algebra Lineal tutoriales]--> |
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
− | <td>2 | + | <td>2 14 Agosto</td><td>Camilo</td> |
<td> | <td> | ||
<ul> | <ul> | ||
− | <li> | + | <li>LAB: One variable Calculus with MatLab and applications [http://www.tutorialspoint.com/matlab/matlab_plotting.htm MatLab-Plotting] [http://www.tutorialspoint.com/matlab/matlab_calculus.htm MatLab-Calculus] |
− | + | [[file:Taller-CalcVec1D.pdf]]</li> | |
− | + | ||
</ul> | </ul> | ||
</td> | </td> | ||
<td> | <td> | ||
− | [http://en.wikibooks.org/wiki/Linear_Algebra/Definition_and_Examples_of_Linear_Independence Linear Independence Examples]<br> | + | <!--[http://en.wikibooks.org/wiki/Linear_Algebra/Definition_and_Examples_of_Linear_Independence Linear Independence Examples]<br> |
[http://algebra.nipissingu.ca/tutorials/vector_space.html Vector Space]<br/> | [http://algebra.nipissingu.ca/tutorials/vector_space.html Vector Space]<br/> | ||
[http://www.math.odu.edu/~bogacki/cgi-bin/lat.cgi?c=li Linear independence]<br/> | [http://www.math.odu.edu/~bogacki/cgi-bin/lat.cgi?c=li Linear independence]<br/> | ||
[http://ocw.mit.edu/ans7870/18/18.06/tools/individual/eigen_lecture_1.html Eigen-vectors/values]<br> | [http://ocw.mit.edu/ans7870/18/18.06/tools/individual/eigen_lecture_1.html Eigen-vectors/values]<br> | ||
− | [http://ocw.mit.edu/ans7870/18/18.06/javademo/Eigen/ eigenvalues]</td> | + | [http://ocw.mit.edu/ans7870/18/18.06/javademo/Eigen/ eigenvalues]</td>--> |
</tr> | </tr> | ||
− | |||
<tr> | <tr> | ||
− | <td>3 | + | <td>3 21-Agosto</td><td>Angelica</td> |
<td> | <td> | ||
<ul> | <ul> | ||
− | <li> | + | <li>First order differential equations.</li> |
+ | <ol> | ||
+ | <li>Basic Concepts. Modeling. | ||
+ | </li><li>Geometric Meaning of y r ϭ f (x, y). Direction Fields, Euler’s Method. | ||
+ | </li><li>Separable ODEs. Modeling. | ||
+ | </li><li>Exact ODEs. Integrating Factors. | ||
+ | </li><li>Linear ODEs. Bernoulli Equation. Population Dynamics. | ||
+ | </li><li>Orthogonal Trajectories. | ||
+ | </li><li>Existence and Uniqueness of Solutions for Initial Value Problem. | ||
+ | </ol> | ||
</ul> | </ul> | ||
</td> | </td> | ||
<td> | <td> | ||
− | MuPAD [http://math.uprag.edu/MuPAD.pdf 1] [http://math.uprag.edu/mupad-algebra-lineal.pdf 2] [http://www.brown.edu/Departments/Engineering/Courses/En4/Tutorials/Mupad_tutorial.pdf 3]<br/> | + | <!--MuPAD [http://math.uprag.edu/MuPAD.pdf 1] [http://math.uprag.edu/mupad-algebra-lineal.pdf 2] [http://www.brown.edu/Departments/Engineering/Courses/En4/Tutorials/Mupad_tutorial.pdf 3]<br/> |
− | [[File:LaboratorioUno-AlgebraLineal.pdf]] [[Taller1|Punto 3 Taller 1]] | + | [[File:LaboratorioUno-AlgebraLineal.pdf]] [[Taller1|Punto 3 Taller 1]]--> |
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
− | <td>4 | + | <td>4 28-Agosto</td><td>Angélica</td> |
<td> | <td> | ||
<ul> | <ul> | ||
− | <li> | + | </li><li>Homogeneous Linear ODEs of Second Order |
+ | </li><li>Homogeneous Linear ODEs with Constant Coefficients | ||
+ | </li><li>Modeling of Free Oscillations of a Mass–Spring System | ||
+ | </li><li>Differential Operators. | ||
+ | </li><li>Euler–Cauchy Equations | ||
+ | </li><li>Existence and Uniqueness of Solutions. | ||
+ | </li><li>Nonhomogeneous ODEs | ||
+ | </li><li>Modeling: Forced Oscillations. | ||
</ul> | </ul> | ||
</td> | </td> | ||
Line 156: | Line 170: | ||
<tr> | <tr> | ||
− | <td>5 | + | <td>5 4-Sept</td><td>Jorge</td> |
<td> | <td> | ||
<ul> | <ul> | ||
− | <li> | + | <li>Linear Algebra and systems of ordinary differential equations</li> |
− | <li> | + | <ol> |
− | <li> | + | <li>Spaces and subspaces.</li> |
− | <li> | + | <li>Lineal combination and space generation.</li> |
+ | <li>lineal dependence and lineal independece.</li> | ||
+ | <li>Basis and dimension</li> | ||
+ | <li>Linear transformations.</li> | ||
+ | <li>Eigen-values and eigen-vectors</li> | ||
+ | </ol> | ||
</ul> | </ul> | ||
</td> | </td> | ||
<td rowspan="4"> | <td rowspan="4"> | ||
− | [http://mathinsight.org/applet/changing_surfaces_stokes_theorem Stokes theorem]<br/> | + | <!--[http://mathinsight.org/applet/changing_surfaces_stokes_theorem Stokes theorem]<br/> |
[http://mathinsight.org/divergence_idea The idea of the divergence of a vector field]<br/> | [http://mathinsight.org/divergence_idea The idea of the divergence of a vector field]<br/> | ||
[http://mathinsight.org/divergence_subtleties Subtleties about divergence]<br/> | [http://mathinsight.org/divergence_subtleties Subtleties about divergence]<br/> | ||
[http://mathinsight.org/curl_idea The idea of the curl of a vector field]<br/> | [http://mathinsight.org/curl_idea The idea of the curl of a vector field]<br/> | ||
[http://mathinsight.org/curl_subtleties Subtleties about curl]<br/> | [http://mathinsight.org/curl_subtleties Subtleties about curl]<br/> | ||
− | [http://mathinsight.org/greens_theorem_idea The idea behind Green's theorem] | + | [http://mathinsight.org/greens_theorem_idea The idea behind Green's theorem]--> |
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
− | <td>6 | + | <td>6 11-Sept</td><td>Jorge</td> |
<td> | <td> | ||
<ul> | <ul> | ||
− | <li> | + | <ol> |
− | <li> | + | <li>Matrix: Operations and properties.</li> |
− | <li> | + | <li>Resolve linear systems by Gauss and Gauss-Jordan methods.</li> |
− | <li> | + | <li>Resolve linear systems by inverse and Cramer's rule.</li> |
− | <li> | + | <li>Applications: Leonlief product supplies analysis.</li> |
+ | </ol> | ||
+ | </ul> | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>7 18-Sept</td><td>Angélica</td> | ||
+ | <td> | ||
+ | <ul> | ||
+ | <li>systems of ordinary differential equations.</li> | ||
+ | <li> Homogeneous systems of ordinary differential equations.</li> | ||
+ | <li>Resolve linear systems of differential equations .</li> | ||
+ | <li>linearization of high order differential equations.</li> | ||
</ul> | </ul> | ||
</td> | </td> | ||
Line 189: | Line 220: | ||
<tr> | <tr> | ||
− | <td> | + | <td>8 25 -Sept</td><td>Jorge and Angélica</td> |
<td> | <td> | ||
<ul> | <ul> | ||
− | <li> | + | <li>LAB: EDOs with MatLab, practice session.</li> |
− | + | ||
</ul> | </ul> | ||
</td> | </td> | ||
Line 199: | Line 229: | ||
<tr> | <tr> | ||
− | <td> | + | <td>9 2 -Oct</td><td>Todos</td> |
<td> | <td> | ||
<ul> | <ul> | ||
− | <li> | + | <li>TEST</li> |
− | + | ||
− | + | ||
− | + | ||
</ul> | </ul> | ||
</td> | </td> | ||
+ | <td></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td>10 16 -Oct</td><td>Camilo</td> | ||
+ | <td> | ||
+ | <ul> | ||
+ | <li>Vectors in 2-Space and 3-Space.[[file:Vectors-ScalarFields.pdf]]</li> | ||
+ | </ul> | ||
+ | <ol> | ||
+ | <li>Inner Product (Dot Product).</li> | ||
+ | <li>Vector Product (Cross Product).</li> | ||
+ | </ol> | ||
+ | <ul> | ||
+ | <li>Vector and Scalar Functions and their Fields.</li> | ||
+ | </ul> | ||
+ | <ol> | ||
+ | <li>Vector Calculus: Derivatives.</li> | ||
+ | <li>Functions of Several Variables.</li> | ||
+ | </ol> | ||
+ | <td></td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
− | <td> | + | <td>11 23 -Oct</td><td>Camilo</td> |
<td> | <td> | ||
<ul> | <ul> | ||
− | <li> | + | <li>Gradient of a Scalar Field. Application in ecology:[[file:BIOS-83-97.pdf]] Taller: [[file:Taller-CalcVec2.pdf]] Datos: [[file:data.txt]] Salida de zunzun.com: [[file:zunzunout.pdf]]</li> |
+ | <li>Directional Derivatives.</li> | ||
+ | <li>Divergence of a Vector Field.</li> | ||
+ | <li>Curl of a Vector Field.</li> | ||
+ | <li>Lagrange multipliers.</li> | ||
+ | <li>Tutorial de cálculo vectorial con Matlab: [http://www2.math.umd.edu/~jmr/241/MATLABmaterials.html] </li> | ||
</ul> | </ul> | ||
</td> | </td> | ||
Line 220: | Line 273: | ||
</tr> | </tr> | ||
+ | |||
+ | |||
+ | <!-- | ||
<tr> | <tr> | ||
<td>10 3-Abr</td><td>Camilo</td> | <td>10 3-Abr</td><td>Camilo</td> | ||
Line 304: | Line 360: | ||
<td></td> | <td></td> | ||
</tr> | </tr> | ||
− | + | --> | |
</table> | </table> | ||
Line 371: | Line 427: | ||
* En el desarrollo de las clases prevalecerá la conceptualización en los temas a tratar sobre las destrezas operativas que pueden trabajarse mediante Sistemas Algebraicos Computacionales SAC. | * En el desarrollo de las clases prevalecerá la conceptualización en los temas a tratar sobre las destrezas operativas que pueden trabajarse mediante Sistemas Algebraicos Computacionales SAC. | ||
* Durante el curso se hará énfasis en la importancia de cada tema en la formulación de modelos, considerando los diferentes campos de aplicación, más que en la implementación de algoritmos. | * Durante el curso se hará énfasis en la importancia de cada tema en la formulación de modelos, considerando los diferentes campos de aplicación, más que en la implementación de algoritmos. | ||
− | |||
== Bibliography/Bibliografía == | == Bibliography/Bibliografía == | ||
Line 387: | Line 442: | ||
# [[File:SemanaUno.pdf]] | # [[File:SemanaUno.pdf]] | ||
# [[File:SemanaDos.pdf]] | # [[File:SemanaDos.pdf]] | ||
+ | # [[File:AlgLineal.pdf]] | ||
+ | # [[File:taller-de-ecuaciones.pdf]] | ||
+ | [https://sites.google.com/site/algoritmosyprogramacionuc/archivos/Laboratorio_Sistema.m?attredirects=0&d=1 link Laboratorio sistemas.m] | ||
== Matlab's Scripts == | == Matlab's Scripts == |
Latest revision as of 14:23, 10 November 2014
Contents |
[edit] English version
This is a basic subject on matrix theory and linear algebra. Emphasis is given to topics that will be useful in models and simulation for several disciplines. It includes systems of equations, vector spaces, determinants and eigenvalues.
[edit] Goals
- Enhance the mathematics skills and fundaments.
- Give enough mathematic basics to understand the topics of modelling and simulation systems.
[edit] Content
- Vectorial calculus. One variable calculus.
- Review of one variable calculus.
- Function definition.
- Derivatives.
- Integrals.
- First order differential equations.
- Basic Concepts. Modeling.
- Geometric Meaning of y r ϭ f (x, y). Direction Fields, Euler’s Method.
- Separable ODEs. Modeling.
- Exact ODEs. Integrating Factors.
- Linear ODEs. Bernoulli Equation. Population Dynamics.
- Orthogonal Trajectories.
- Existence and Uniqueness of Solutions for Initial Value Problem.
- Second order differential equations.
- Homogeneous Linear ODEs of Second Order
- Homogeneous Linear ODEs with Constant Coefficients
- Modeling of Free Oscillations of a Mass–Spring System
- Differential Operators.
- Euler–Cauchy Equations
- Existence and Uniqueness of Solutions.
- Nonhomogeneous ODEs
- Modeling: Forced Oscillations.
- Linear Algebra and systems of ordinary differential equations
- Spaces and subspaces.
- Lineal combination and space generation.
- lineal dependence and lineal independece.
- Basis and dimension
- Linear transformations.
- Eigen-values and eigen-vectors
- Matrix: Operations and properties.
- Resolve linear systems by Gauss and Gauss-Jordan methods.
- Resolve linear systems by inverse and Cramer's rule.
- Applications: Leonlief product supplies analysis.
- systems of ordinary differential equations.
- Homogeneous systems of ordinary differential equations.
- Resolve linear systems of differential equations .
- linearization of high order differential equations.
- Vectorial calculus. Several variable functions.
- Vectors in 2-Space and 3-Space.
- Inner Product (Dot Product).
- Vector Product (Cross Product).
- Vector and Scalar Functions and their Fields.
- Vector Calculus: Derivatives.
- Functions of Several Variables.
- Gradient of a Scalar Field.
- Directional Derivatives.
- Divergence of a Vector Field.
- Curl of a Vector Field.
- Lagrange multipliers.
- partial differential equations.
- Introduction to partial differential equations (PDE)
- Solution by transforms methods
[edit] Week activities
Session date | Teacher | Topic | External resources |
1 - 31-Julio | Todos, Camilo |
|
|
2 14 Agosto | Camilo |
|
|
3 21-Agosto | Angelica |
|
|
4 28-Agosto | Angélica |
|
|
5 4-Sept | Jorge |
|
|
6 11-Sept | Jorge |
|
|
7 18-Sept | Angélica |
|
|
8 25 -Sept | Jorge and Angélica |
|
|
9 2 -Oct | Todos |
|
|
10 16 -Oct | Camilo |
| |
11 23 -Oct | Camilo |
|
[edit] Versión en español
[edit] Objetivos
- Fortalecer la formación matemática de los estudiantes
- Proporcionar los fundamentos matemáticos necesarios para abordar adecuadamente las temáticas propias del modelado y simulación
[edit] Competencias generadas
[edit] Competencias interpretativas
- Identificar las variables, constantes y parámetros que definen un sistema.
- Leer, comprender e interpretar textos científicos con contenido matemático.
- Asociar los resultados obtenidos a través del modelado con las características del sistema representado.
- Expresar principios e hipótesis usando diferentes elementos del lenguaje matemático.
[edit] Competencias argumentativas
- Establecer y analizar relaciones que representan fenómenos, sistemas y/o procesos.
- Seleccionar y utilizar métodos apropiados para resolver problemas o sistemas.
- Explicar ideas técnicas a través de textos, gráficas, ecuaciones e imágenes.
[edit] Competencias propositivas
- Plantear un modelo matemático adecuado a casos particulares o problemas típicos.
- Realizar diferentes tipos de representaciones para un único sistema.
[edit] Contenido
- SISTEMAS DE ECUACIONES LINEALES.
- Matrices: operaciones y propiedades
- Resolución de sistemas de ecuaciones por los métodos de Gauss y Gauss Jordan.
- Resolución de sistemas de ecuaciones lineales utilizando la inversa y regla de Cramer.
- Aplicaciones: Análisis de Insumo Producto de Leontief, Teoría de grafos y Cadenas de Markov.
- VECTORES EN Rn
- Vectores en Rn
- Operaciones entre vectores
- Producto punto, norma y proyecciones
- Producto cruz
- Aplicaciones: Paralelismo y ortogonalidad de vectores, vectores de área y de superficie.
- ESPACIOS VECTORIALES
- Espacios y sub-espacios
- Combinación lineal y espacio generado
- Dependencia e independencia lineal
- Bases y dimensión
- Transformaciones lineales.
- Valores propios y vectores propios
- FUNCIONES DE UNA Y VARIAS VARIABLES
- Generalidades de funciones en una variable
- Generalidades de funciones en varias variables
- Derivadas parciales, gradiente y derivadas direccionales
- Optimización
- Integración múltiple
- Análisis vectorial
- ECUACIONES DIFERENCIALES
- Ecuaciones diferenciales de primer orden
- Ecuaciones de diferenciales de segundo orden
- Sistemas de ecuaciones diferenciales
- Solución mediante el método de transformadas
- Introducción a las ecuaciones diferenciales parciales
- La enseñanza de este curso se realizará a través de clases teóricas y prácticas en salas de cómputo.
- En el desarrollo de las clases prevalecerá la conceptualización en los temas a tratar sobre las destrezas operativas que pueden trabajarse mediante Sistemas Algebraicos Computacionales SAC.
- Durante el curso se hará énfasis en la importancia de cada tema en la formulación de modelos, considerando los diferentes campos de aplicación, más que en la implementación de algoritmos.
- Giordano, F., Fox, W., Horton, S., & Weir, M. (2009). 'A first course in mathematical modelling . Canada: Brooks/Cole Cengage Learning.
- Grossman, S. (2008). Álgebra Lineal. México: Mc Graw Hill.
- Kolman, B., & Hill, D. (2013). Álgebra Lineal. Fundamentos y apliaciones. Bogotá: Pearson.
- Larson, R., & Edwards, B. H. (2010). Calculo 2 de Varias variables. China: Mc Graw Hill.
- Meerschaaert, M. (2007). Mathematical Modeling. San Diego, United States of America: Elsevier Academic Press.
- Zill, D. G. (2002). Ecuaciones diferenciales con aplicaciones de modelado. México: Cengage Learning.
[edit] Metodología
[edit] Bibliography/Bibliografía
[edit] Slides / Presentaciones
[edit] Matlab's Scripts
[edit] Linear dependency
% PRUEBA PARA MOSTRAR INDEPENDENCIA LINEAL
x = rand(1, 3)-0.5;
y = rand(1, 3)-0.5;
a = rand(10, 1)-0.5;
b = rand(10, 1)-0.5;
z = a*x + b*y;
hold off
quiver3(0,0,0,x(1),x(2),x(3), 'r');
hold on
t= zeros(10,3);
quiver3(0,0,0,y(1),y(2),y(3), 'b');
quiver3(t(:,1),t(:,2),t(:,3),z(:,1),z(:,2),z(:,3),'g');
title('Dependencia lineal x rojo, y azul, combinaciones aleatorias verde ')
[edit] Lineal transformations
%PRUEBAS CON EL DETERMINANTE EN MATRICES DE ESCALAMIENTO
% construir el poligono con vertices x,y
x = [2 2 1 1 2 3 2 2 5 5 4 5 6 6 5 5 2];
y = [1 4 4 7 7 8 9 11 11 9 8 7 7 4 4 1 1];
x = x-3.5;
y = y-5.5;
hold off
plot(x, y, 'b')
title 'poligono original'
axis([-7 7 -11 11])
grid
pause
p = [x; y;];
S1 = [1 0; 0 2]
det_s1 = det(S1)
S2 = [sqrt(2) 0; 0 sqrt(2)]
det_s2 = det(S2)
S3 = [0.5 0; 0 0.5]
det_s3 = det(S3)
S4 = S3*S2;
det_s4 = det(S4)
S5 = [0.5 0; 0 2]
det_s5 = det(S5)
p1 = S2*p;
hold off
plot(x, y, 'b:')
hold on
plot(p1(1, :), p1(2, :), 'r')
title 'poligono escalado al doble'
axis([-7 7 -11 11])
grid
pause
p2 = S4*p;
hold off
plot(x, y, 'b:')
hold on
plot(p1(1, :), p1(2, :), 'b:')
plot(p2(1, :), p2(2, :), 'r')
title 'polígono escalado a la cuarta parte'
axis([-7 7 -11 11])
grid
pause
% PRUEBAS DE ACUMULAR LA ROTACION CON LA MULTIPLICACION
a = pi/4;
R = [cos(a) -sin(a); sin(a) cos(a)]
M = [1 0; 0 1];
for i=1:8
M = R*M;
p1 = M*p;
hold off
plot(x, y, 'b:')
hold on
plot(p1(1, :), p1(2, :), 'r')
title 'polígono rotacion acumulada'
axis([-7 7 -11 11])
grid
pause
end
% SINGULAR VALUE DECOMPOSITION PARA UNA MATRIZ GENERADA CON ROTACION Y ESCALAMIENTO
R = [0.8 0.0 0.6; 0 1 0; -0.6 0.0 0.8]
S = [0.5 0 0; 0 2 0; 0 0 1.5]
M = S*R;
[U, Z, V] = svd(M)
% ANIMACION 3D CON UNA MATRIZ DE ROTACION APLICADA A PUNTOS EN UNA SUPERFICIE
hold off
n = 400;
x = 2*(rand(1, n)-0.5);
y = 2*(rand(1, n)-0.5);
z = x.^2 - y.^2;
p = [x; y; z];
for i=1:180,
a = i*pi/90;
rx = [1 0 0; 0 cos(a) -sin(a); 0 sin(a) cos(a)];
pp = rx*p;
plot(pp(1,:), pp(2,:), 'r.')
axis([-1 1 -1 1])
pause(0.1)
end