Personal tools

Difference between revisions of "HPC:Tensorflow"

From hpcwiki

Jump to: navigation, search
(Basic Anaconda Tensorflow GPU installation)
(Functionality test)
 
Line 27: Line 27:
 
* Code for iPython:
 
* Code for iPython:
  
  import tensorflow as tf
+
  '''import''' tensorflow '''as''' tf
  # Creates a graph.
+
  ''# Creates a graph.''
 
  a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
 
  a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
 
  b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
 
  b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
 
  c = tf.matmul(a, b)
 
  c = tf.matmul(a, b)
  # Creates a session with log_device_placement set to True.
+
  ''# Creates a session with log_device_placement set to True.''
 
  sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
 
  sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
  # Runs the op.
+
  ''# Runs the op.''
 
  print(sess.run(c))
 
  print(sess.run(c))
  

Latest revision as of 18:43, 21 April 2018

[edit] Basic Anaconda Tensorflow GPU installation

By April 21st, 2018, Anaconda 3 (i.e. running Python 3.5 or above) has evolved enough to provide functional GPU-based instances of Tensorflow, running on iPython or Jupyter notebook.

In the worker nodes, it is recommended to use non interactive scripts; however, it is under study the provision of Jupyter-notebook and/or iPython in the worker nodes (not recommended). A better alternative to be addressed is the installation of Jupyter-hub in the frontend to control python slave processes in the worker nodes.

To test the GPU-based Tensorflow functionality on the worker nodes, the following procedure has been performed

  • Create a test user:
# adduser test
# passwd test
# su test
$ cd ~
  • Download and install Anaconda3 v. 5.1.0
$ wget https://repo.anaconda.com/archive/Anaconda3-5.1.0-Linux-x86_64.sh
$ bash Anaconda3-5.1.0-Linux-x86_64.sh
$ cd anaconda3/bin
$ ./conda install tensorflow-gpu


[edit] Functionality test

  • Test in iPython the GPU functionality and Tensorflow general behavior
$ ./ipython
  • Code for iPython:
import tensorflow as tf
# Creates a graph.
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
# Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
# Runs the op.
print(sess.run(c))
  • Test output should looks like (alongside warnings and other stuff)
Device mapping:
/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: Tesla K40c, pci bus
id: 0000:05:00.0
b: /job:localhost/replica:0/task:0/device:GPU:0
a: /job:localhost/replica:0/task:0/device:GPU:0
MatMul: /job:localhost/replica:0/task:0/device:GPU:0
[[ 22.  28.]
 [ 49.  64.]]